Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 418
Filter
1.
Biosystems ; : 105323, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244080

ABSTRACT

We usually accept that consciousness is in the brain. This statement corresponds to a Neurocentrist view. However, with all the physical and physiological data currently available, a convincing explanation of how consciousness emerges has not been given this topic is aborded by Anil Seth 2021; Seth, 2021). Because of this, a natural question arises: Is consciousness really in the brain or not? If the answer is no, this corresponds to the Embodied perspective. We cannot discriminate between these two points of view because we cannot identify how the organism processes the information. If we try to measure information processing in the brain, then the Neurocentrist view is unavoidable. For example, the information integration theory of Tononi's research group and the global work area theory developed by Dehaene and Baars, focus solely on the brain without considering aspects of Embodied vision (See Tononi 2021; Dehaene 2021). In this article, we propose an index based on Shannon's entropy, capable of identifying the leading processing elements acting: Are they mainly inner or external? In order to validate it, we performed simulations with networks accounting for different amounts of internal and outer layers. Since Shannon's entropy is an abstract measure of the information content, this index is not dependent on the physical network nor the proportion of different layers. Therefore, we validate the index as free of bias. This index is a way to discriminate between Embodied from Neurocentrist hypotheses.

2.
Chemphyschem ; : e202400458, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235149

ABSTRACT

In this work, the surface nature-dependent behaviors of magnetic deep eutectic solvents (MDES) and magnetic low-transition-temperature mixtures (MLTTM) are reported for the first time. It has been observed that the surface of material where the MDES or the MLTTM is placed could considerably affect the dispersion and the magnetic and structural properties of these magnetic mixtures. Several experiments have been carried out in order to point out the differences observed in the properties depending on the material on which these magnetic mixtures are placed. As a result, it has been shown that the MDESs or MLTTMs are retained and adhered to glass surfaces, resulting in a loss of magnetism in addition to a loss in the performance of synthesis carried out on the closeness of glass materials as the interaction between the glass and the mixture modify the composition and therefore the properties. As a preliminary result, when using these magnetic mixtures as extractant solvents in dispersive liquid-liquid microextraction, the MDES or MLTTM is retained on the walls of the glass tubes reducing the extraction efficiency, repeatability and the extraction recovery using an external magnetic field. For all these reasons, polypropylene materials should be recommended when handling MDES and MLTTMs.

3.
Sci Total Environ ; 949: 175209, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39098411

ABSTRACT

Anthropogenic debris, particularly plastic pollution, has emerged as a significant environmental threat to biodiversity. Given that seabirds interact with artificial debris through ingestion, entanglement, and nest incorporation, it is particularly important to quantify the quantity, origins, and chemical composition of these debris items. In this work, it was evaluated for the first time the occurrence of anthropogenic debris in nests of yellow-legged gull (Larus michahellis atlantis) in biosphere reserves of the Canary Islands (Spain). A total of 48 abandoned nests were collected from five remote and hardly accessible sampling areas, revealing that 81.3 % contained anthropogenic waste, with plastic accounting for 34.7 % of the debris, followed by metal (33.6 %) and paper (19.6 %). On average, 32.8 ± 40.9 items were found per nest. Regarding the origin, food packagings (47.8 %), personal hygiene products (21.7 %), and textiles (15.8 %) were identified as the predominant sources. Furthermore, the polymer composition of the plastics was characterised by means of Fourier-transform infrared spectroscopy analysis, being polyester the most abundant (38.2 %), followed by polyethylene (25.6 %) and rayon (10.3 %). The incorporation of anthropogenic debris into nest construction may result from outdoor human activities carried out far from nesting areas.


Subject(s)
Charadriiformes , Environmental Monitoring , Plastics , Waste Products , Spain , Animals , Waste Products/analysis , Plastics/analysis , Environmental Pollution/statistics & numerical data , Environmental Pollutants/analysis , Nesting Behavior
5.
Methods Mol Biol ; 2827: 109-143, 2024.
Article in English | MEDLINE | ID: mdl-38985266

ABSTRACT

Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.


Subject(s)
Plant Growth Regulators , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Tissue Culture Techniques/methods , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Plant Development/drug effects , Plants/metabolism , Plants/drug effects , Lactones/pharmacology , Lactones/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Acetates/pharmacology , Acetates/metabolism
6.
Bioresour Technol ; 406: 130961, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876281

ABSTRACT

This study investigates the potential of humic substances (HS) and graphene oxide (GO), as extracellular electron acceptors (EEA) for nitrification, aiming to explore alternatives to sustain this process in wastewater treatment systems. Experimental results demonstrate the conversion of ammonium to nitrate (up to 87 % of conversion) coupled to the reduction of either HS or GO by anaerobic consortia. Electron balance confirmed the contribution of HS and GO to ammonium oxidation. Tracer analysis in incubations performed with 15NH4+ demonstrated 15NO3- as the main product with a minor fraction ending as 29N2. Phylogenetic analysis identified Firmicutes, Euryarchaeota, and Chloroflexi as the microbial lineages potentially involved in anoxic nitrification linked to HS reduction. This study introduces a new avenue for research in which carbon-based materials with electron-accepting capacity may support the anoxic oxidation of ammonium, for instance in bioelectrochemical systems in which carbon-based anodes could support this novel process.


Subject(s)
Carbon , Nitrification , Carbon/chemistry , Electrons , Graphite/chemistry , Phylogeny , Oxidation-Reduction , Ammonium Compounds/metabolism , Anaerobiosis , Nitrates/metabolism , Bacteria/metabolism
7.
JPGN Rep ; 5(2): 186-189, 2024 May.
Article in English | MEDLINE | ID: mdl-38756129

ABSTRACT

Congenital mixed hiatal hernia is a disorder that combines features of both sliding and paraoesophageal hernias. The precise incidence of congenital mixed hiatal hernia during the pediatric and neonatal period remains uncertain, making diagnosis challenging within this age cohort. This case presents a 15-day-old female with an 8% postnatal weight loss and apost-feeding vomiting. An upper gastrointestinal series, computer tomography, and upper endoscopy revealed a mixed hiatal hernia. The patient underwent a laparoscopic herniorrhaphy and Nissen fundoplication achieving successful resumption of complete oral feeding before discharge. Diagnosis and management of this condition in neonates remain challenging due to its rarity and variable clinical presentations. This report emphasizes the importance of early recognition, accurate diagnosis, and tailored management strategies in the neonatal period. Further research, with a collaborative effort between pediatricians and surgeons, is needed to refine diagnostic criteria, establish evidence-based management approaches, and improve outcomes for affected children.

8.
Sensors (Basel) ; 24(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794099

ABSTRACT

Basketball involves frequent high-intensity movements requiring optimal aerobic power. Altitude training can enhance physiological adaptations, but research examining its effects in basketball is limited. This study aimed to characterize the internal/external workload of professional basketball players during preseason and evaluate the effects of altitude and playing position. Twelve top-tier professional male basketball players (Liga Endesa, ACB; guards: n = 3, forwards: n = 5, and centers: n = 4) participated in a crossover study design composed of two training camps with nine sessions over 6 days under two different conditions: high altitude (2320 m) and sea level (10 m). Internal loads (heart rate, %HRMAX) and external loads (total distances covered across speed thresholds, accelerations/decelerations, impacts, and jumps) were quantified via wearable tracking and heart rate telemetry. Repeated-measures MANOVA tested the altitude x playing position effects. Altitude increased the total distance (+10%), lower-speed running distances (+10-39%), accelerations/decelerations (+25-30%), average heart rate (+6%), time in higher-intensity HR zones (+23-63%), and jumps (+13%) across all positions (p < 0.05). Positional differences existed, with guards accruing more high-speed running and centers exhibiting greater cardiovascular demands (p < 0.05). In conclusion, a 6-day altitude block effectively overloads training, providing a stimulus to enhance fitness capacities when structured appropriately. Monitoring workloads and individualizing training by playing position are important when implementing altitude training, given the varied responses.


Subject(s)
Altitude , Basketball , Heart Rate , Workload , Humans , Basketball/physiology , Male , Heart Rate/physiology , Adult , Young Adult , Cross-Over Studies , Athletic Performance/physiology , Acceleration , Running/physiology , Athletes
9.
Appl Microbiol Biotechnol ; 108(1): 337, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767664

ABSTRACT

Flow cytometry has made a significant contribution to the study of several complex fundamental mechanisms in plant cytogenetics, becoming a useful analytical tool to understand several mechanisms and processes underlying plant growth, development, and function. In this study, the genome size, DNA ploidy level, and A-T/G-C ratio were measured for the first time for two genotypes of chia, Salvia hispanica, an herbaceous plant commonly used in phytotherapy and nutrition. This study also evaluated, for the first time by flow cytometry, the capacity to produce organic acids of tissues stained with LysoTracker Deep Red after elicitation with either yeast extract or cadmium chloride. Rosmarinic acid content differed between the two chia varieties treated with different elicitor concentrations, compared with non-elicited plant material. Elicited tissues of both varieties contained a higher content of rosmarinic acid compared with non-elicited cultures, and cadmium chloride at 500 µM was much better than that at 1000 µM, which led to plant death. For both genotypes, a dose-response was observed with yeast extract, as the higher the concentration of elicitor used, the higher rosmarinic acid content, resulting also in better results and a higher content of rosmarinic acid compared with cadmium chloride. This study demonstrates that flow cytometry may be used as a taxonomy tool, to distinguish among very close genotypses of a given species and, for the first time in plants, that this approach can also be put to profit for a characterization of the cytoplasmic acid phase and the concomitant production of secondary metabolites of interest in vitro, with or without elicitation. KEY POINTS: • Genome size, ploidy level, A-T/G-C ratio, and cytoplasm acid phase of S. hispanica • Cytometry study of cytoplasm acid phase of LysoTracker Deep Red-stained plant cells • Yeast extract or cadmium chloride elicited rosmarinic acid production of chia tissues.


Subject(s)
Cinnamates , Depsides , Flow Cytometry , Rosmarinic Acid , Salvia , Cinnamates/metabolism , Depsides/metabolism , Flow Cytometry/methods , Salvia/genetics , Salvia/chemistry , Salvia/metabolism , Ploidies , Genotype , Cadmium Chloride , Genome, Plant
10.
Sci Total Environ ; 923: 171368, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38438040

ABSTRACT

Coastal sediments play a central role in regulating the amount of land-derived reactive nitrogen (Nr) entering the ocean, and their importance becomes crucial in vulnerable ecosystems threatened by anthropogenic activities. Sedimentary denitrification has been identified as the main sink of Nr in marine environments, while anaerobic ammonium oxidation with nitrite (anammox) has also been pointed out as a key player in controlling the nitrogen pool in these locations. Collected evidence in the present work indicates that the microbial biota in coastal sediments from Baja California (northwestern Mexico) has the potential to drive anaerobic ammonium oxidation linked to Mn(IV) reduction (manganammox). Unamended sediment showed ammonification, but addition of vernadite (δMnO2 with nano-crystal size ∼15 Å) as terminal electron acceptor fueled simultaneous ammonium oxidation (up to ∼400 µM of ammonium removed) and production of Mn(II) with a ratio ∆[Mn(II)]/∆[NH4+] of 1.8, which is very close to the stoichiometric value of manganammox (1.5). Additional incubations spiked with external ammonium also showed concomitant ammonium oxidation and Mn(II) production, accounting for ∼30 % of the oxidized ammonium. Tracer analysis revealed that the nitrogen loss associated with manganammox was 4.2 ± 0.4 µg 30N2/g-day, which is 17-fold higher than that related to the feammox process (anaerobic ammonium oxidation linked to Fe(III) reduction, 0.24 ± 0.02 µg 30N2/g-day). Taxonomic characterization based on 16S rRNA gene sequencing revealed the existence of several clades belonging to Desulfobacterota as potential microorganisms catalyzing the manganammox process. These findings suggest that manganammox has the potential to be an additional Nr sink in coastal environments, whose contribution to total Nr losses remains to be evaluated.


Subject(s)
Ammonium Compounds , Nitrogen , Nitrogen/analysis , Anaerobiosis , Geologic Sediments/chemistry , Ferric Compounds , Ecosystem , RNA, Ribosomal, 16S/genetics , Mexico , Oxides , Oxidation-Reduction , Denitrification
11.
J Funct Morphol Kinesiol ; 9(1)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38535415

ABSTRACT

The unprecedented COVID-19 health crisis severely disrupted global sports in 2020, prompting lengthy suspensions followed by resumed competitions under abnormal behind-closed-doors conditions without fans. These disruptions necessitated tactical adaptations by coaches and teams, attempting to still achieve successful outcomes. This study investigates the pandemic's impacts on performance metrics and indicators within Spanish professional soccer. Utilizing systematic notational analysis, 760 match cases from the 2019-2020 La Liga season were examined, comprising 27 matchdays from the pre-COVID context and 11 after resumption. Multivariate tests identified significant pre/post differences and interactions for various technical indicators including shots, cards, corners, and offside calls. The pandemic was associated with a reduction from 12 to just 5 identifiable playing styles, suggestive of increased conservatism featuring more passive play, limited attacking depth, and horizontal ball movement. Such tactical changes appear provoked by condensed fixture scheduling post-lockdown, the lack of supportive crowds, and compromised player fitness/recovery. By quantifying these COVID-precipitated changes, the analysis provides tangible evidence for coaches to make informed adjustments in training and preparation for functioning effectively in disrupted environments. The findings emphasize that versatility and flexibility will be vital to optimize performance during times of unprecedented uncertainty.

12.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543026

ABSTRACT

On the verge of a theranostic approach to personalised medicine, copper-64 is one of the emerging radioisotopes in nuclear medicine due to its exploitable nuclear and biochemical characteristics. The increased demand for copper-64 for preclinical and clinical studies has prompted the development of production routes. This research aims to compare the (p,n) reaction on nickel-64 solid versus liquid targets and evaluate the effectiveness of [64Cu]CuCl2 solutions prepared by the two routes. As new treatments for neurotensin receptor-overexpressing tumours have developed, copper-64 was used to radiolabel Neurotensin (8-13) and Neuromedin N. High-quality [64Cu]CuCl2 solutions were prepared using ACSI TR-19 and IBA Cyclone Kiube cyclotrons. The radiochemical purity after post-irradiation processing reached 99% (LT) and 99.99% (ST), respectively. The irradiation of a solid target with 11.8 MeV protons and 150 µAh led to 704 ± 84 MBq/µA (17.6 ± 2.1 GBq/batch at EOB). At the end of the purification process (1 h, 90.90% activity yield), the solution for peptide radiolabelling had a radioactive concentration of 1340.4 ± 70.1 MBq/mL (n.d.c.). The irradiation of a liquid target with 16.9 MeV protons and 230 µAh resulted in 3.7 ± 0.2 GBq/batch at EOB, which corresponds to an experimental production yield of 6.89 GBq.cm3/(g.µA)sat. Benefiting from a shorter purification process (40 min), the activity yielded 90.87%, while the radioactive concentration of the radiolabelling solution was lower (492 MBq/mL, n.d.c.). The [64Cu]CuCl2 solutions were successfully used for the radiolabelling of DOTA-NT(8-13) and DOTA-NN neuropeptides, resulting in a high RCP (>99%) and high molar activity (27.2 and 26.4 GBq/µmol for LT route compared to 45 and 52 GBq/µmol for ST route, respectively). The strong interaction between the [64Cu]Cu-DOTA-NT(8-13) and the colon cancerous cell lines HT29 and HCT116 proved that the specificity for NTR had not been altered, as shown by the uptake and retention data.


Subject(s)
Copper Radioisotopes , Peptide Fragments , Protons , Copper , Neurotensin , Radioisotopes , Radiopharmaceuticals
13.
Sensors (Basel) ; 24(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38400303

ABSTRACT

Currently, basketball teams use inertial devices for monitoring external and internal workload demands during training and competitions. However, the intensity thresholds preset by device manufacturers are generic and not adapted for specific sports (e.g., basketball) and players' positions (e.g., guards, forwards, and centers). Using universal intensity thresholds may lead to failure in accurately capturing the true external load faced by players in different positions. Therefore, the present study aimed to identify external load demands based on playing positions and establish different intensity thresholds based on match demands in order to have specific reference values for teams belonging to the highest competitive level of Spanish basketball. Professional male players (n = 68) from the Spanish ACB league were monitored during preseason official games. Three specific positions were used to group the players: guards, forwards, and centers. Speed, accelerations, decelerations, impacts/min, and player load/min were collected via inertial devices. Two-step clustering and k-means clustering categorized load metrics into intensity zones for guards, forwards, and centers. Guards covered more distance at high speeds (12.72-17.50 km/h) than forwards and centers (p < 0.001). Centers experienced the most impacts/min (p < 0.001). Guards exhibited greater accelerations/decelerations, albeit mostly low magnitude (p < 0.001). K-means clustering allowed the setting of five zones revealing additional thresholds. All positions showed differences in threshold values (p < 0.001). The findings provide insights into potential disparities in the external load during competition and help establish position-specific intensity thresholds for optimal monitoring in basketball. These data are highly applicable to the design of training tasks at the highest competitive level.


Subject(s)
Athletic Performance , Basketball , Male , Humans , Workload , Acceleration
14.
ACS Appl Bio Mater ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38364213

ABSTRACT

Soft matter bioelectronics represents an emerging and interdisciplinary research frontier aiming to harness the synergy between biology and electronics for advanced diagnostic and healthcare applications. In this context, a whole family of soft gels have been recently developed with self-healing ability and tunable biological mimetic features to act as a tissue-like space bridging the interface between the electronic device and dynamic biological fluids and body tissues. This review article provides a comprehensive overview of electroactive polymer gels, formed by noncovalent intermolecular interactions and dynamic covalent bonds, as injectable electroactive gels, covering their synthesis, characterization, and applications. First, hydrogels crafted from conducting polymers (poly(3,4-ethylene-dioxythiophene) (PEDOT), polyaniline (PANi), and polypyrrole (PPy))-based networks which are connected through physical interactions (e.g., hydrogen bonding, π-π stacking, hydrophobic interactions) or dynamic covalent bonds (e.g., imine bonds, Schiff-base, borate ester bonds) are addressed. Injectable hydrogels involving hybrid networks of polymers with conductive nanomaterials (i.e., graphene oxide, carbon nanotubes, metallic nanoparticles, etc.) are also discussed. Besides, it also delves into recent advancements in injectable ionic liquid-integrated gels (iongels) and deep eutectic solvent-integrated gels (eutectogels), which present promising avenues for future research. Finally, the current applications and future prospects of injectable electroactive polymer gels in cutting-edge bioelectronic applications ranging from tissue engineering to biosensing are outlined.

15.
JMIR Res Protoc ; 13: e50325, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393761

ABSTRACT

BACKGROUND: Frailty resulting from the loss of muscle quality can potentially be delayed through early detection and physical exercise interventions. There is a demand for cost-effective tools for the objective evaluation of muscle quality, in both cross-sectional and longitudinal assessments. Literature suggests that quantitative analysis of ultrasound data captures morphometric, compositional, and microstructural muscle properties, while biological assays derived from blood samples are associated with functional information. OBJECTIVE: This study aims to assess multiparametric combinations of ultrasound and blood-based biomarkers to offer a cross-sectional evaluation of the patient frailty phenotype and to track changes in muscle quality associated with supervised exercise programs. METHODS: This prospective observational multicenter study will include patients aged 70 years and older who are capable of providing informed consent. We aim to recruit 100 patients from hospital environments and 100 from primary care facilities. Each patient will undergo at least two examinations (baseline and follow-up), totaling a minimum of 400 examinations. In hospital environments, 50 patients will be measured before/after a 16-week individualized and supervised exercise program, while another 50 patients will be followed up after the same period without intervention. Primary care patients will undergo a 1-year follow-up evaluation. The primary objective is to compare cross-sectional evaluations of physical performance, functional capacity, body composition, and derived scales of sarcopenia and frailty with biomarker combinations obtained from muscle ultrasound and blood-based assays. We will analyze ultrasound raw data obtained with a point-of-care device, along with a set of biomarkers previously associated with frailty, using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Additionally, we will examine the sensitivity of these biomarkers to detect short-term muscle quality changes and functional improvement after a supervised exercise intervention compared with usual care. RESULTS: At the time of manuscript submission, the enrollment of volunteers is ongoing. Recruitment started on March 1, 2022, and ends on June 30, 2024. CONCLUSIONS: The outlined study protocol will integrate portable technologies, using quantitative muscle ultrasound and blood biomarkers, to facilitate an objective cross-sectional assessment of muscle quality in both hospital and primary care settings. The primary objective is to generate data that can be used to explore associations between biomarker combinations and the cross-sectional clinical assessment of frailty and sarcopenia. Additionally, the study aims to investigate musculoskeletal changes following multicomponent physical exercise programs. TRIAL REGISTRATION: ClinicalTrials.gov NCT05294757; https://clinicaltrials.gov/ct2/show/NCT05294757. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50325.

16.
Brain Sci ; 14(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38248268

ABSTRACT

(1) Background: Spinocerebellar ataxias (SCA) is a term that refers to a group of hereditary ataxias, which are neurological diseases characterized by degeneration of the cells that constitute the cerebellum. Studies suggest that magnetic resonance imaging (MRI) supports diagnoses of ataxias, and linear measurements of the aneteroposterior diameter of the midbrain (ADM) have been investigated using MRI. These measurements correspond to studies in spinocerebellar ataxia type 2 (SCA2) patients and in healthy subjects. Our goal was to obtain the cut-off value for ADM atrophy in SCA2 patients. (2) Methods: This study evaluated 99 participants (66 SCA2 patients and 33 healthy controls). The sample was divided into estimations (80%) and validation (20%) samples. Using the estimation sample, we fitted a logistic model using the ADM and obtained the cut-off value through the inverse of regression. (3) Results: The optimal cut-off value of ADM was found to be 18.21 mm. The area under the curve (AUC) of the atrophy risk score was 0.957 (95% CI: 0.895-0.991). Using this cut-off on the validation sample, we found a sensitivity of 100.00% (95% CI: 76.84%-100.00%) and a specificity of 85.71% (95% CI: 42.13%-99.64%). (4) Conclusions: We obtained a cut-off value that has an excellent discriminatory capacity to identify SCA2 patients.

17.
Phys Chem Chem Phys ; 26(3): 2260-2268, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38165403

ABSTRACT

In this study, we investigated the mechanical behavior of pristine copper (Cu) nanoparticles (NPs) and Cu@graphene (Cu@G) hybrid NPs using molecular dynamics simulations. The longitudinal engineering strain was calculated as a measure of compression until reaching 25% of the initial size of the NPs. The stress-strain curves revealed the elastic-to-plastic transition in the Cu NPs at a longitudinal strain of 3.57% with a yield strength of 6.15 GPa. On the other hand, the Cu@G NPs exhibited a maximum average load point at a longitudinal strain of 6.81% with a yield strength of 8.26 GPa. The hybrid Cu@G NPs showed increased strength and resistance to plastic deformation compared to the pure Cu NPs, while the calculation of the elastic modulus indicated a higher load resistance provided by the graphene coverage for the Cu@G NPs. Furthermore, the analysis of atomic configurations, dislocations, and stress distribution demonstrated that the graphene flakes play a crucial role in preventing dislocation events and faceting in the Cu@G NPs by acting as a shock absorber, distributing the applied force on themselves, and producing a more homogeneous stress distribution on the Cu NPs; additionally, they prevent the movement of Cu atoms, reducing the occurrence of dislocations and surface faceting, thanks to their supportive effect. Overall, our findings highlight the potential of hybrid nanomaterials, such as Cu@G, for enhancing the mechanical properties of metallic NPs, which could have significant implications for the development of advanced nanomaterials with improved performance in a variety of applications.

18.
Crit Rev Biotechnol ; 44(2): 202-217, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36775666

ABSTRACT

Single-cell approaches are a promising way to obtain high-resolution transcriptomics data and have the potential to revolutionize the study of plant growth and development. Recent years have seen the advent of unprecedented technological advances in the field of plant biology to study the transcriptional information of individual cells by single-cell RNA sequencing (scRNA-seq). This review focuses on the modern advancements of single-cell transcriptomics in plants over the past few years. In addition, it also offers a new insight of how these emerging methods will expedite advance research in plant biotechnology in the near future. Lastly, the various technological hurdles and inherent limitations of single-cell technology that need to be conquered to develop such outstanding possible knowledge gain is critically analyzed and discussed.


Subject(s)
Biotechnology , Gene Expression Profiling , Plant Development , Single-Cell Analysis
19.
Biodegradation ; 35(1): 47-70, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37436663

ABSTRACT

In the context of the anaerobic ammonium oxidation process (anammox), great scientific advances have been made over the past two decades, making anammox a consolidated technology widely used worldwide for nitrogen removal from wastewaters. This review provides a detailed and comprehensive description of the anammox process, the microorganisms involved and their metabolism. In addition, recent research on the application of the anammox process with alternative electron acceptors is described, highlighting the biochemical reactions involved, its advantages and potential applications for specific wastewaters. An updated description is also given of studies reporting the ability of microorganisms to couple the anammox process to extracellular electron transfer to insoluble electron acceptors; particularly iron, carbon-based materials and electrodes in bioelectrochemical systems (BES). The latter, also referred to as anodic anammox, is a promising strategy to combine the ammonium removal from wastewater with bioelectricity production, which is discussed here in terms of its efficiency, economic feasibility, and energetic aspects. Therefore, the information provided in this review is relevant for future applications.


Subject(s)
Ammonium Compounds , Wastewater , Denitrification , Nitrogen/metabolism , Anaerobic Ammonia Oxidation , Electrons , Oxidation-Reduction , Anaerobiosis , Bioreactors , Ammonium Compounds/metabolism , Oxidants
20.
Electrophoresis ; 45(3-4): 300-309, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37946567

ABSTRACT

This paper analyzes the role of the diffusion coefficient in the movement of analytes that can reversibly react with a selector given a product in the presence of drift. The problem mimics the movement of enantiomers in a capillary electrophoresis experiment. As is well known, the signal in the capillary must be sharp enough to make a good determination of the effective mobility of the analytes being analyzed. The essence of the technique is based on fast interconversion rates. Therefore, the effective diffusion coefficient must be negligible during the experiment. In the present work, an exact expression for both the apparent mobility and the diffusion coefficient is obtained. This is done by writing the rate equations governing the process and solving them using the generating function technique. The effective mobility coincides with the Wren and Rowe equation, whereas the diffusion coefficient allows us to determine the values of the parameters to be taken into account so that this quantity is minimal or close to zero. On the other hand, the numerical solution of the kinetic equations and Monte Carlo simulations allow us to follow the signal in the capillary and to determine its space-time evolution.


Subject(s)
Electrophoresis, Capillary , Electrophoresis, Capillary/methods , Stereoisomerism , Kinetics , Monte Carlo Method , Diffusion
SELECTION OF CITATIONS
SEARCH DETAIL