Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Vis Exp ; (186)2022 08 03.
Article En | MEDLINE | ID: mdl-35993755

Extracellular vesicles (EVs) are biological nanoparticles secreted by all cells for cellular communication and waste elimination. They participate in a vast range of functions by acting on and transferring their cargos to other cells in physiological and pathological conditions. Given their presence in biofluids, EVs represent an excellent resource for studying disease processes and can be considered a liquid biopsy for biomarker discovery. An attractive aspect of EV analysis is that they can be selected based on markers of their cell of origin, thus reflecting the environment of a specific tissue in their cargo. However, one of the major handicaps related to EV isolation methods is the lack of methodological consensuses and standardized protocols. Astrocytes are glial cells with essential roles in the brain. In neurodegenerative diseases, astrocyte reactivity may lead to altered EV cargo and aberrant cellular communication, facilitating/enhancing disease progression. Thus, analysis of astrocyte EVs may lead to the discovery of biomarkers and potential disease targets. This protocol describes a 2-step method of enrichment of astrocyte-derived EVs (ADEVs) from human plasma. First, EVs are enriched from defibrinated plasma via polymer-based precipitation. This is followed by enrichment of ADEVs through ACSA-1-based immunocapture with magnetic micro-beads, where resuspended EVs are loaded onto a column placed in a magnetic field. Magnetically labeled ACSA-1+ EVs are retained within the column, while other EVs flow through. Once the column is removed from the magnet, ADEVs are eluted and are ready for storage and analysis. To validate the enrichment of astrocyte markers, glial fibrillary acidic protein (GFAP), or other specific astrocytic markers of intracellular origin, can be measured in the eluate and compared with the flow-through. This protocol proposes an easy, time-efficient method to enrich ADEVs from plasma that can be used as a platform to examine astrocyte-relevant markers.


Astrocytes , Extracellular Vesicles , Astrocytes/metabolism , Biomarkers/metabolism , Extracellular Vesicles/metabolism , Humans , Plasma/metabolism
2.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article En | MEDLINE | ID: mdl-35742806

Nerve regeneration is a slow process that needs to be guided for distances greater than 5 mm. For this reason, different strategies are being studied to guide axonal growth and accelerate the axonal growth rate. In this study, we employ an electroconductive fibrillar substrate that is able to topographically guide axonal growth while accelerating the axonal growth rate when subjected to an exogenous electric field. Dorsal root ganglia were seeded in co-culture with Schwann cells on a substrate of polylactic acid microfibers coated with the electroconductive polymer polypyrrole, adding gold microfibers to increase its electrical conductivity. The substrate is capable of guiding axonal growth in a highly aligned manner and, when subjected to an electrical stimulation, an improvement in axonal growth is observed. As a result, an increase in the maximum length of the axons of 19.2% and an increase in the area occupied by the axons of 40% were obtained. In addition, an upregulation of the genes related to axon guidance, axogenesis, Schwann cells, proliferation and neurotrophins was observed for the electrically stimulated group. Therefore, our device is a good candidate for nerve regeneration therapies.


Ganglia, Spinal , Polymers , Axons/physiology , Coculture Techniques , Electric Stimulation , Nerve Regeneration/physiology , Polyesters , Pyrroles/pharmacology , Schwann Cells
...