Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(7): 2476-2482, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36972710

ABSTRACT

Step edges of topological crystalline insulators can be viewed as predecessors of higher-order topology, as they embody one-dimensional edge channels embedded in an effective three-dimensional electronic vacuum emanating from the topological crystalline insulator. Using scanning tunneling microscopy and spectroscopy, we investigate the behavior of such edge channels in Pb1-xSnxSe under doping. Once the energy position of the step edge is brought close to the Fermi level, we observe the opening of a correlation gap. The experimental results are rationalized in terms of interaction effects which are enhanced since the electronic density is collapsed to a one-dimensional channel. This constitutes a unique system to study how topology and many-body electronic effects intertwine, which we model theoretically through a Hartree-Fock analysis.

2.
Proc Natl Acad Sci U S A ; 119(42): e2210589119, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36215505

ABSTRACT

Spin chains proximitized with superconducting condensates have emerged as one of the most promising platforms for the realization of Majorana modes. Here, we craft diluted spin chains atom by atom following a seminal theoretical proposal suggesting indirect coupling mechanisms as a viable route to trigger topological superconductivity. Starting from single adatoms hosting deep Shiba states, we use the highly anisotropic Fermi surface of the substrate to create spin chains characterized by different magnetic configurations along distinct crystallographic directions. By scrutinizing a large set of parameters we reveal the ubiquitous emergence of boundary modes. Although mimicking signatures of Majorana modes, the end modes are identified as topologically trivial Shiba states. Our work demonstrates that zero-energy modes in spin chains proximitized to superconductors are not necessarily a link to Majorana modes while simultaneously identifying other experimental platforms, driving mechanisms, and test protocols for the determination of topologically nontrivial superconducting phases.

3.
Adv Mater ; 34(26): e2201328, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35460114

ABSTRACT

The discovery of new catalysts that are efficient and sustainable is a major research endeavor for many industrial chemical processes. This requires an understanding and determination of the catalytic origins, which remains a challenge. Here, a novel method to identify the position of active sites based on searching for crystalline symmetry-protected obstructed atomic insulators (OAIs) that have metallic surface states is described. The obstructed Wannier charge centers (OWCCs) in OAIs are pinned by symmetries at some empty Wyckoff positions so that surfaces that accommodate these sites are guaranteed to have metallic obstructed surface states (OSSs). It is proposed and confirmed that the OSSs are the catalytic activity origins for crystalline materials. The theory on 2H-MoTe2 , 1T'-MoTe2 , and NiPS3 bulk single crystals is verified, whose active sites are consistent with the calculations. Most importantly, several high-efficiency catalysts are successfully identified just by considering the number of OWCCs and the symmetry. Using the real-space-invariant theory applied to a database of 34 013 topologically trivial insulators, 1788 unique OAIs are identified, of which 465 are potential high-performance catalysts. The new methodology will facilitate and accelerate the discovery of new catalysts for a wide range of heterogeneous redox reactions.

4.
Adv Mater ; 34(11): e2108637, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35048455

ABSTRACT

There is considerable interest in van der Waals (vdW) materials as potential hosts for chiral skyrmionic spin textures. Of particular interest is the ferromagnetic, metallic compound Fe3 GeTe2 (FGT), which has a comparatively high Curie temperature (150-220 K). Several recent studies have reported the observation of chiral Néel skyrmions in this compound, which is inconsistent with its presumed centrosymmetric structure. Here the observation of Néel type skyrmions in single crystals of FGT via Lorentz transmission electron microscopy (LTEM) is reported. It is shown from detailed X-ray diffraction structure analysis that FGT lacks an inversion symmetry as a result of an asymmetric distribution of Fe vacancies. This vacancy-induced breaking of the inversion symmetry of this compound is a surprising and novel observation and is a prerequisite for a Dzyaloshinskii-Moriya vector exchange interaction which accounts for the chiral Néel skyrmion phase. This phenomenon is likely to be common to many 2D vdW materials and suggests a path to the preparation of many such acentric compounds. Furthermore, it is found that the skyrmion size in FGT is strongly dependent on its thickness: the skyrmion size increases from ≈100 to ≈750 nm as the thickness of the lamella is increased from ≈90 nm to ≈2 µm. This extreme size tunability is a feature common to many low symmetry ferro- and ferri-magnetic compounds.

5.
Sci Adv ; 8(4): eabi7291, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35080983

ABSTRACT

High-energy resolution spectroscopic studies of quantum magnets proved extremely valuable in accessing magnetodynamics quantities, such as energy barriers, magnetic interactions, and lifetime of excited states. Here, we investigate a previously unexplored flavor of low-energy spin excitations for quantum spins coupled to an electron bath. In sharp contrast to the usual tunneling signature of two steps symmetrically centered around the Fermi level, we find a single step in the conductance. Combining time-dependent and many-body perturbation theories, magnetic field-dependent tunneling spectra are explained as the result of an interplay between weak magnetic anisotropy energy, magnetic interactions, and Stoner-like electron-hole excitations that are strongly dependent on the magnetic states of the nanostructures. The results are rationalized in terms of a noncollinear magnetic ground state and the dominance of ferro- and antiferromagnetic interactions. The atomically crafted nanomagnets offer an appealing model for the exploration of electrically pumped spin systems.

6.
Nat Commun ; 12(1): 6722, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34795233

ABSTRACT

Interfacing magnetism with superconducting condensates is rapidly emerging as a viable route for the development of innovative quantum technologies. In this context, the development of rational design strategies to controllably tune the interaction between magnetic moments is crucial. Here we address this problem demonstrating the possibility of tuning the interaction between local spins coupled through a superconducting condensate with atomic scale precision. By using Cr atoms coupled to superconducting Nb, we use atomic manipulation techniques to precisely control the relative distance between local spins along distinct crystallographic directions while simultaneously sensing their coupling by scanning tunneling spectroscopy. Our results reveal the existence of highly anisotropic interactions, lasting up to very long distances, demonstrating the possibility of crossing a quantum phase transition by acting on the direction and interatomic distance between spins. The high tunability provides novel opportunities for the realization of topological superconductivity and the rational design of magneto-superconducting interfaces.

7.
Science ; 374(6567): 616-620, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34709893

ABSTRACT

The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been shown to stabilize 2D magnetic order, the demonstration of a 2D magnet with in-plane rotational symmetry has remained elusive. We constructed a nearly ideal easy-plane system, a single CrCl3 monolayer on graphene/6H-SiC(0001), and observed robust ferromagnetic ordering with critical scaling characteristic of a 2D-XY system. These observations indicate the realization of a finite-size Berezinskii-Kosterlitz-Thouless phase transition in a large-area, quasi­free-standing van der Waals monolayer magnet with an XY universality class. This offers a material platform to host 2D superfluid spin transport and topological magnetic textures.

8.
Adv Mater ; 33(32): e2102267, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34216404

ABSTRACT

Heterostructures formed from interfaces between materials with complementary properties often display unconventional physics. Of especial interest are heterostructures formed with ferroelectric materials. These are mostly formed by combining thin layers in vertical stacks. Here the first in situ molecular beam epitaxial growth and scanning tunneling microscopy characterization of atomically sharp lateral heterostructures between a ferroelectric SnTe monolayer and a paraelectric PbTe monolayer are reported. The bias voltage dependence of the apparent heights of SnTe and PbTe monolayers, which are closely related to the type-II band alignment of the heterostructure, is investigated. Remarkably, it is discovered that the ferroelectric domains in the SnTe surrounding a PbTe core form either clockwise or counterclockwise vortex-oriented quadrant configurations. In addition, when there is a finite angle between the polarization and the interface, the perpendicular component of the polarization always points from SnTe to PbTe. Supported by first-principles calculation, the mechanism of vortex formation and preferred polarization direction is identified in the interaction between the polarization, the space charge, and the strain effect at the horizontal heterointerface. The studies bring the application of 2D group-IV monochalcogenides on in-plane ferroelectric heterostructures a step closer.

9.
Nano Lett ; 21(7): 2758-2765, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33792332

ABSTRACT

Artificially engineered topological superconductivity has emerged as a viable route to create Majorana modes. In this context, proximity-induced superconductivity in materials with a sizable spin-orbit coupling has been intensively investigated in recent years. Although there is convincing evidence that superconductivity may indeed be induced, it has been difficult to elucidate its topological nature. Here, we engineer an artificial topological superconductor by progressively introducing superconductivity (Nb), strong spin-orbital coupling (Pt), and topological states (Bi2Te3). Through spectroscopic imaging of superconducting vortices within the bare s-wave superconducting Nb and within proximitized Pt and Bi2Te3 layers, we detect the emergence of a zero-bias peak that is directly linked to the presence of topological surface states. Our results are rationalized in terms of competing energy trends which are found to impose an upper limit to the size of the minigap separating Majorana and trivial modes, its size being ultimately linked to fundamental materials properties.

10.
Nat Commun ; 12(1): 1108, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33597519

ABSTRACT

Local spins coupled to superconductors give rise to several emerging phenomena directly linked to the competition between Cooper pair formation and magnetic exchange. These effects are generally scrutinized using a spectroscopic approach which relies on detecting the in-gap bound modes arising from Cooper pair breaking, the so-called Yu-Shiba-Rusinov (YSR) states. However, the impact of local magnetic impurities on the superconducting order parameter remains largely unexplored. Here, we use scanning Josephson spectroscopy to directly visualize the effect of magnetic perturbations on Cooper pair tunneling between superconducting electrodes at the atomic scale. By increasing the magnetic impurity orbital occupation by adding one electron at a time, we reveal the existence of a direct correlation between Josephson supercurrent suppression and YSR states. Moreover, in the metallic regime, we detect zero bias anomalies which break the existing framework based on competing Kondo and Cooper pair singlet formation mechanisms. Based on first-principle calculations, these results are rationalized in terms of unconventional spin-excitations induced by the finite magnetic anisotropy energy. Our findings have far reaching implications for phenomena that rely on the interplay between quantum spins and superconductivity.

11.
Nano Lett ; 20(9): 6590-6597, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32809837

ABSTRACT

Two-dimensional (2D) van der Waals ferroelectrics provide an unprecedented architectural freedom for the creation of artificial multiferroics and nonvolatile electronic devices based on vertical and coplanar heterojunctions of 2D ferroic materials. Nevertheless, controlled microscopic manipulation of ferroelectric domains is still rare in monolayer-thick 2D ferroelectrics with in-plane polarization. Here we report the discovery of robust ferroelectricity with a critical temperature close to 400 K in SnSe monolayer plates grown on graphene and the demonstration of controlled room-temperature ferroelectric domain manipulation by applying appropriate bias voltage pulses to the tip of a scanning tunneling microscope (STM). This study shows that STM is a powerful tool for detecting and manipulating the microscopic domain structures in 2D ferroelectric monolayers, which are difficult for conventional approaches such as piezoresponse force microscopy, thus facilitating the hunt for other 2D ferroelectric monolayers with in-plane polarization with important technological applications.

12.
Nat Commun ; 11(1): 3507, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32665572

ABSTRACT

It has recently been proposed that combining chirality with topological band theory results in a totally new class of fermions. Understanding how these unconventional quasiparticles propagate and interact remains largely unexplored so far. Here, we use scanning tunneling microscopy to visualize the electronic properties of the prototypical chiral topological semimetal PdGa. We reveal chiral quantum interference patterns of opposite spiraling directions for the two PdGa enantiomers, a direct manifestation of the change of sign of their Chern number. Additionally, we demonstrate that PdGa remains topologically non-trivial over a large energy range, experimentally detecting Fermi arcs in an energy window of more than 1.6 eV that is symmetrically centered around the Fermi level. These results are a consequence of the deep connection between chirality in real and reciprocal space in this class of materials, and, thereby, establish PdGa as an ideal topological chiral semimetal.

13.
Science ; 354(6317): 1269-1273, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27940869

ABSTRACT

Topological crystalline insulators are materials in which the crystalline symmetry leads to topologically protected surface states with a chiral spin texture, rendering them potential candidates for spintronics applications. Using scanning tunneling spectroscopy, we uncover the existence of one-dimensional (1D) midgap states at odd-atomic surface step edges of the three-dimensional topological crystalline insulator (Pb,Sn)Se. A minimal toy model and realistic tight-binding calculations identify them as spin-polarized flat bands connecting two Dirac points. This nontrivial origin provides the 1D midgap states with inherent stability and protects them from backscattering. We experimentally show that this stability results in a striking robustness to defects, strong magnetic fields, and elevated temperature.

14.
Adv Mater ; 28(45): 10073-10078, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27677534

ABSTRACT

The effective gating of topological insulators is demonstrated, through the coupling of molecules to their surface. By using electric fields, they allow for dynamic control of the interface charge state by adding or removing single electrons. This process creates a robust transconductance bistability resembling a single-electron transistor. These findings make hybrid molecule/topological interfaces functional elements while at the same time pushing miniaturization to its ultimate limit.

15.
Nat Commun ; 7: 12027, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27345240

ABSTRACT

Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, that is, gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials.

16.
Adv Mater ; 28(11): 2183-8, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26780377

ABSTRACT

A Bi2Te3 single crystal is grown with the modified Bridgman technique. The crystal has a nominal composition with a Te content of 61 mol% resulting in the existence of two distinct regions, p- and n-doped, respectively; color-coded tunneling spectra are taken over 60 nm at the transition region.

17.
Nat Commun ; 6: 8691, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26498368

ABSTRACT

Quantum interference is a striking manifestation of one of the basic concepts of quantum mechanics: the particle-wave duality. A spectacular visualization of this effect is the standing wave pattern produced by elastic scattering of surface electrons around defects, which corresponds to a modulation of the electronic local density of states and can be imaged using a scanning tunnelling microscope. To date, quantum-interference measurements were mainly interpreted in terms of interfering electrons or holes of the underlying band-structure description. Here, by imaging energy-dependent standing-wave patterns at noble metal surfaces, we reveal, in addition to the conventional surface-state band, the existence of an 'anomalous' energy band with a well-defined dispersion. Its origin is explained by the presence of a satellite in the structure of the many-body spectral function, which is related to the acoustic surface plasmon. Visualizing the corresponding charge oscillations provides thus direct access to many-body interactions at the atomic scale.

18.
Nat Commun ; 5: 5349, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25354961

ABSTRACT

The spin-momentum locking of topological states offers an ideal platform to explore novel magnetoelectric effects. These intimately depend on the ability to manipulate the spin texture in a controlled way. Here we combine scanning tunnelling microscopy with single-atom deposition to map the evolution of topological states under the influence of different magnetic perturbations. We obtain signatures of Dirac fermion-mediated magnetic order for extremely dilute adatom concentrations. This striking observation is found to critically depend on the single adatoms' magnetic anisotropy and the position of the Fermi level. Our findings open new perspectives in spin engineering topological states at the atomic scale and pave the way to explore novel spin-related topological phenomena with promising potential for applications.

19.
Nano Lett ; 9(12): 4343-7, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19883050

ABSTRACT

We have demonstrated the reversible and local modification of the electronic properties of graphene by hydrogen passivation and subsequent electron-stimulated hydrogen desorption with an scanning tunneling microscope tip. In addition to changing the morphology, we show that the hydrogen passivation is stable at room temperature and modifies the electronic properties of graphene, opening a gap in the local density of states. This insulating state is reversed by local desorption of the hydrogen, and the unaltered electronic properties of graphene are recovered. Using this mechanism, we have "written" graphene patterns on nanometer length scales. For patterned regions that are roughly 20 nm or greater, the inherent electronic properties of graphene are completely recovered. Below 20 nm we observe dramatic variations in the electronic properties of the graphene as a function of pattern size. This reversible and local mechanism for modifying the electronic properties of graphene has far-reaching implications for nanoscale circuitry fabricated from this revolutionary material.


Subject(s)
Crystallization/methods , Graphite/chemistry , Hydrogen/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Adsorption , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
20.
Nanotechnology ; 19(42): 424010, 2008 Oct 22.
Article in English | MEDLINE | ID: mdl-21832670

ABSTRACT

We characterize photoinduced charge injection at the interface between a fluorinated copper phthalocyanine (CuPcF(16)) film deposited over a GaAs(100) wafer by means of pump-probe spectroscopy combined with ultraviolet photoemission spectroscopy (UPS) and electromodulated transmission spectroscopy. UPS characterization of the hybrid interface demonstrates that the CuPcF(16) 's lowest unoccupied molecular level (LUMO) is almost aligned with the GaAs conduction band. Upon photoexcitation of the hybrid interface with 150 fs pulses we observe an efficient photoinduced electron transfer from CuPcF(16) to GaAs. The evolution of interfacial CuPcF(16) charges appear to be strongly influenced by energy level alignment at the GaAs/CuPcF(16) heterojunction.

SELECTION OF CITATIONS
SEARCH DETAIL
...