Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Diabetes Metab Syndr Obes ; 16: 3937-3951, 2023.
Article in English | MEDLINE | ID: mdl-38077483

ABSTRACT

Introduction: Circular RNA (circRNAs) are a type of non-coding RNA (ncRNAs) with a wealth of functions. Recently, circRNAs have been identified as important regulators of diabetic kidney disease (DKD), owing to their stability and enrichment in exosomes. However, the role of circRNAs in exosomes of tubular epithelial cells in DKD development has not been fully elucidated. Methods: In our study, microarray technology was used to analyze circRNA expression in cell supernatant exosomes isolated from HK-2 cells with or without high glucose (HG) treatment. The small interfering RNAs (siRNA) and plasmid overexpression were used to validate functions of differentially expressed circRNAs. Results: We found that exosome concentration was higher in HG-stimulated HK-2 cells than in controls. A total of 235 circRNAs were significantly increased and 458 circRNAs were significantly decreased in the exosomes of the HG group. In parallel with the microarray data, the qPCR results showed that the expression of circ_0009885, circ_0043753, and circ_0011760 increased, and the expression of circ_0032872, circ_0004716, and circ_0009445 decreased in the HG group. Rescue experiments showed that the effects of high glucose on regulation of CCL2, IL6, fibronetin, n cadherin, e cadherin and epcam expression can be reversed by inhibiting or overexpressing these circRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses indicated that circRNA parental genes are associated with glucose metabolism, lipid metabolism, and inflammatory processes, which are important in DKD development. Further analysis of circRNA/miRNA interactions indicated that 152 differentially expressed circRNAs with fold change (FC) ≥1.5 could be paired with 43 differentially expressed miRNAs, which are associated with diabetes or DKD. Discussion: Our results indicate that exosomal circRNAs may be promising diagnostic and therapeutic biomarkers, and may play a critical role in the progression of DKD.

2.
Clin Lab ; 67(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34258963

ABSTRACT

BACKGROUND: COVID-19 is caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which was discovered in 2019 and spread around the world in a short time. SARS-CoV-2 nucleic acid amplification tests (NAATs) have been rapidly developed and quickly applied to clinical testing of COVID-19. Aim of this study was to evaluate the performance of four NAAT assays. METHODS: Limit of detection (LOD), precision, accuracy, analytical specificity and analytical interference studies on four NAATs (Daan, Sansure, Hybribio, and Bioperfectus) were performed according to Clinical Laboratory Standards Institute protocols and guidelines. The four NAATs were compared using 46 clinical samples. RESULTS: The LOD of the N gene for Daan, Sansure, and Hybribio was 500 copies/mL, and that for Bioperfectus was 1,000 copies/mL. The LOD of the ORF1ab gene for Daan, Bioperfectus, and Hybribio was 3,000 copies/mL, and that for Sansure was 2,000 copies/mL. A good precision was shown at the concentration above 20% of the LOD for all four NAATs, with all individual coefficients of variation below 3.6%. Satisfactory results were also observed in the accuracy, analytical specificity, and analytical interference tests. The results of the comparison test showed that Daan, Sansure, and Hybribio NAATs could detect the samples with a specificity of 100% (30/30) and a sensitivity of 100% (16/16), whereas Bioperfectus NAAT detected the samples with a specificity of 100% (30/30) and a sensitivity of 81.25% (13/16). However, no significant difference in sensitivity was found between Bioperfectus NAAT and the three other NAATs (p > 0.05). CONCLUSIONS: The four SARS-CoV-2 NAATs showed comparable performance, with the LOD of the N gene lower than the LOD of the ORF1ab gene.


Subject(s)
COVID-19 , Clinical Laboratory Services , Humans , Limit of Detection , Nucleic Acid Amplification Techniques , SARS-CoV-2 , Sensitivity and Specificity
3.
DNA Cell Biol ; 35(11): 722-729, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27574949

ABSTRACT

Atherosclerosis is a common pathological basis of cardiovascular disease, which remains the leading cause of mortality. Long noncoding RNAs (lncRNAs) are newly studied non-protein-coding RNAs involved in gene regulation, but how lncRNAs exert regulatory effect on atherosclerosis remains unclear. In this study, we found that lncRNA HOXC cluster antisense RNA 1 (HOXC-AS1) and homeobox C6 (HOXC6) were downregulated in carotid atherosclerosis by performing microarray analysis. The results were verified in atherosclerotic plaques and normal arterial intima tissues by quantitative reverse transcription PCR and western blot analysis. Lentivirus-mediated overexpression of HOXC-AS1 induced HOXC6 expression at mRNA and protein levels in THP-1 macrophages. Besides, oxidized low-density lipoprotein (Ox-LDL) decreased expression of HOXC-AS1 and HOXC6 in a time-dependent manner. Induction of cholesterol accumulation by Ox-LDL could be partly suppressed by overexpression of HOXC-AS1.


Subject(s)
Cholesterol/metabolism , Homeodomain Proteins/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , RNA, Long Noncoding/genetics , Atherosclerosis/metabolism , Cell Line , Gene Expression Regulation/drug effects , Humans , Lipoproteins, LDL/genetics , Real-Time Polymerase Chain Reaction
4.
J Lipid Res ; 57(8): 1398-411, 2016 08.
Article in English | MEDLINE | ID: mdl-27281478

ABSTRACT

Accumulated evidence shows that vanin-1 (VNN1) plays a key part in glucose metabolism. We explored the effect of VNN1 on cholesterol metabolism, inflammation, apoptosis in vitro, and progression of atherosclerotic plaques in apoE(-/-) mice. Oxidized LDL (Ox-LDL) significantly induced VNN1 expression through an ERK1/2/cyclooxygenase-2/PPARα signaling pathway. VNN1 significantly increased cellular cholesterol content and decreased apoAI and HDL-cholesterol (HDL-C)-mediated efflux by 25.16% and 23.13%, respectively, in THP-1 macrophage-derived foam cells (P < 0.05). In addition, VNN1 attenuated Ox-LDL-induced apoptosis through upregulation of expression of p53 by 59.15% and downregulation of expression of B-cell lymphoma-2 127.13% in THP-1 macrophage (P < 0.05). In vivo, apoE(-/-) mice were divided randomly into two groups and transduced with lentivirus (LV)-Mock or LV-VNN1 for 12 weeks. VNN1-treated mice showed increased liver lipid content and plasma levels of TG (124.48%), LDL-cholesterol (119.64%), TNF-α (148.74%), interleukin (IL)-1ß (131.81%), and IL-6 (156.51%), whereas plasma levels of HDL-C (25.75%) were decreased significantly (P < 0.05). Consistent with these data, development of atherosclerotic lesions was increased significantly upon infection of apoE(-/-) mice with LV-VNN1. These observations suggest that VNN1 may be a promising therapeutic candidate against atherosclerosis.


Subject(s)
Amidohydrolases/physiology , Atherosclerosis/enzymology , Diet, High-Fat/adverse effects , Animals , Apolipoproteins E/genetics , Apoptosis , Atherosclerosis/etiology , Caco-2 Cells , Cholesterol Esters/metabolism , GPI-Linked Proteins/physiology , Hep G2 Cells , Human Umbilical Vein Endothelial Cells , Humans , Lipid Metabolism , Lipoproteins, LDL/physiology , Liver/metabolism , Liver X Receptors/metabolism , Macrophages/enzymology , Male , Mice, Inbred C57BL , Mice, Knockout , PPAR gamma/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Transcriptional Activation , Tumor Suppressor Protein p53/metabolism
5.
Arch Biochem Biophys ; 604: 27-35, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27267730

ABSTRACT

BACKGROUND: Atherosclerosis is a chronic inflammatory disease and represents the leading cause of morbidity and mortality throughout the world. Accumulating evidences have showed that Dihydrocapsaicin (DHC) has been found to exert multiple pharmacological and physiological effects. Nevertheless, the effects and possible mechanism of DHC on proinflammatory response remain largely unexplained. METHODS AND RESULTS: We found that DHC markedly upregulated NFIA and suppressed NF-κB expression in THP-1 macrophages. Up-regulation of proinflammatory cytokines induced by LPS including TNF-α, IL-1ß and IL-6 were markedly suppressed by DHC treatment. We also observed that protein level of NFIA was significantly increased while NF-κB and proinflammatory cytokines were decreased by DHC treatment in apoE(-/-) mice. Lentivirus-mediated overexpression of NFIA suppressed NF-κB and proinflammatory cytokines expression both in THP-1 macrophages and plaque tissues of apoE-/- mice. Moreover, treatment with lentivirus-mediated overexpression of NFIA made the down-regulation of DHC on NF-κB and proinflammatory cytokines expression notably accentuated in THP-1 macrophages and apoE(-/-) mice. In addition, treatment with siRNA targeting NF-κB accentuated the suppression of proinflammatory cytokines by lentivirus-mediated overexpression of NFIA. CONCLUSION: These observations demonstrated that DHC can significantly decrease proinflammatory cytokines through enhancing NFIA and inhibiting NF-κB expression and thus DHC may be a promising candidate as an anti-inflammatory drug for atherosclerosis as well as other disorders.


Subject(s)
Capsaicin/analogs & derivatives , Cytokines/metabolism , Gene Expression Regulation , NF-kappa B/metabolism , NFI Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Apolipoproteins E/genetics , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Capsaicin/chemistry , Gene Expression Profiling , Humans , Inflammation , Interleukin-6/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/cytology , RNA, Small Interfering/metabolism
6.
Int J Clin Exp Pathol ; 8(6): 6708-15, 2015.
Article in English | MEDLINE | ID: mdl-26261553

ABSTRACT

Adenosine triphosphate-binding cassette transporter A1 (ABCA1) is a crucial cholesterol transporter and plays a central role in the high density lipoproteins (HDL) cholesterol metabolism and lipid clearance from the foam cell. Lipoxin A4 (LXA4) is an endogenous lipid mediator that requires cell-cell interaction or cell-platelet interaction for its synthesis. The roles of LXA4 on inflammatory responses are well described, while its effects on mediating ABCA1 and underlying mechanisms remain unclear. In this study, we showed that LXA4 significantly increases expression of ABCA1 and LXRα in a dose-dependent manner in THP-1 macrophage-derived foam cells. Cellular cholesterol content was decreased while cholesterol efflux was increased by LXA4 treatment. However, after short interfering RNA of LXRα, the effects of LXA4 on ABCA1 expression and cholesterol metabolism were significantly abolished. These results provide evidence that LXA4 increases ABCA1 expression and promotes cholesterol efflux through LXRα pathway in THP-1 macrophage-derived foam cells.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Cholesterol/metabolism , Foam Cells/drug effects , Lipoxins/pharmacology , Orphan Nuclear Receptors/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Foam Cells/metabolism , Humans , Liver X Receptors , Orphan Nuclear Receptors/genetics , RNA Interference , Transfection , Up-Regulation
7.
Apoptosis ; 20(10): 1321-37, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26201458

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with an increasing incidence worldwide. Apolipoprotein M (apoM) is a novel apolipoprotein that is mainly expressed in liver and kidney tissues. However, the anti-tumor properties of apoM remain largely unknown. We evaluated the anti-tumor activities and mechanisms of apoM in HCC both in vivo and in vitro. Bioinformatic analysis and luciferase reporter assay results showed that apoM was a potential target of hsa-miR-573 and was downregulated after transfection with hsa-miR-573 mimics. Overexpression of apoM suppressed migration, invasion, and proliferation of hepatoma cells in vitro. Overexpression of hsa-miR-573 in hepatoma cells reduced apoM expression, leading to promotion of the invasion, migration, and proliferation of hepatoma cells in vitro. In addition, hsa-miR-573 markedly promoted growth of xenograft tumors in nude mice with an accompanying reduction in cell apoptosis. ApoM markedly inhibited growth of xenograft tumors in nude mice and promoted cell apoptosis. Moreover, Bcl2A1 mRNA and protein levels were inhibited by apoM overexpression and an increase in apoptosis rate by apoM was markedly compensated by Bcl2A1 overexpression in HepG2 cells. These results provide evidence that hsa-miR-573 promoted tumor growth by inhibition of hepatocyte apoptosis and this pro-tumor effect might be mediated through Bcl2A1 in an apoM-dependent manner. Therefore, our findings may be useful to improve understanding of the critical effects of hsa-miR-573 and apoM in HCC pathogenesis.


Subject(s)
Apoptosis , Carcinogenesis/metabolism , Hepatocytes/metabolism , MicroRNAs/metabolism , Signal Transduction , 3' Untranslated Regions , Animals , Apolipoproteins/metabolism , Apolipoproteins M , Cell Line, Tumor , Cell Movement , Cell Proliferation , Hepatocytes/pathology , Heterografts , Humans , Lipocalins/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Minor Histocompatibility Antigens , Neoplasm Invasiveness , Neoplasm Transplantation , Proto-Oncogene Proteins c-bcl-2/metabolism
8.
Inflammation ; 38(6): 2116-23, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26063187

ABSTRACT

Interleukin 6 (IL-6) is a pro-inflammatory cytokine that is well established as a vital factor in determining the risk of coronary heart disease and pathogenesis of atherosclerosis. Moreover, accumulating evidences have shown that oxidized low-density lipoprotein (ox-LDL) can promote IL-6 expression in macrophages. Nevertheless, the underlying mechanism of how ox-LDL upregulates IL-6 expression remains largely unexplained. We found that the expression of insulin-like growth factor 2 (IGF2), nuclear factor kappa B (NF-κB), and IL-6 was upregulated at both the messenger RNA (mRNA) and protein levels in a dose-dependent manner when treated with 0, 25, 50, or 100 µg/mL of ox-LDL for 48 h in THP-1 macrophages. Moreover, overexpression of IGF2 significantly upregulated NF-κB and IL-6 expressions in THP-1 macrophages. However, the upregulation of NF-κB and IL-6 expressions induced by ox-LDL were significantly abolished by IGF2 small interfering RNA (siRNA) in THP-1 macrophages. Further studies indicated the upregulation of IL-6 induced by ox-LDL could be abolished when treated with NF-κB siRNA in THP-1 macrophages. Ox-LDL might upregulate IL-6 in the cell and its secretion via enhancing NF-κB in an IGF2-dependent manner in THP-1 macrophages.


Subject(s)
Insulin-Like Growth Factor II/metabolism , Interleukin-6/metabolism , Lipoproteins, LDL/pharmacology , Macrophages/drug effects , NF-kappa B/metabolism , Cell Line , Dose-Response Relationship, Drug , Humans , Insulin-Like Growth Factor II/genetics , Interleukin-6/genetics , Macrophages/metabolism , NF-kappa B/genetics , RNA Interference , RNA, Messenger/metabolism , Signal Transduction/drug effects , Transfection , Up-Regulation
9.
DNA Cell Biol ; 34(8): 550-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26057873

ABSTRACT

To explore the anti-inflammatory effect of apolipoprotein M (apoM) on regulation of tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and further investigate the molecular mechanism of apoM in this process. We found that TNF-α could decrease expression of apoM and inhibitor of NF-κB-α (IκBα) in HepG2 cells. Overexpression of apoM caused a significant decrease of ICAM-1 and VCAM-1 expression, while it caused a significant increase of IκBα expression in HepG2 cells. Furthermore, the treatment with TNF-α could increase ICAM-1 and VCAM-1 expression, decrease IκBα protein expression, and increase nuclear factor-κB (NF-κB) activity, and these effects were markedly enhanced by small interfering RNA (siRNA)-mediated silencing of apoM in HepG2 cells. Our findings demonstrated that apoM suppressed TNF-α-induced expression of ICAM-1 and VCAM-1 through inhibiting the activity of NF-κB.


Subject(s)
Apolipoproteins/physiology , Intercellular Adhesion Molecule-1/genetics , Lipocalins/physiology , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Vascular Cell Adhesion Molecule-1/genetics , Apolipoproteins M , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression Regulation/drug effects , Hep G2 Cells , Humans , Intercellular Adhesion Molecule-1/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Vascular Cell Adhesion Molecule-1/metabolism
10.
Oncol Rep ; 34(1): 175-82, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25955388

ABSTRACT

Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide. PHD finger protein 19 (PHF19) encodes a member of the polycomb group (PcG) of proteins that functions by maintaining the repressive transcriptional states of many developmental regulatory genes. In addition, it has been shown that miR-195 plays an important role in the molecular etiology of HCC; however, the effect and possible mechanism of PHF19 on HCC is unclear, and the association between PHF19 and miR-195 has seldom been addressed. In the present study, we investigated the carcinogenic activity and mechanism of PHF19 on HCC in vivo and in vitro. Our results showed that PHF19 is a potential target of hsa-miR-195-5p based on a bioinformatic analysis and results of a luciferase reporter assay. PHF19 was downregulated after transfection with hsa-miR-195-5p mimics. Moreover, we demonstrated that overexpression of PHF19 promoted hepatoma cell migration, invasion and proliferation in vitro. In contrast, overexpression of hsa-miR-195-5p in hepatoma cells reduced PHF19 expression, leading to suppression of hepatoma cell invasion, migration and proliferation in vitro. In addition, PHF19 markedly promoted the growth of xenograft tumors, while hsa-miR-195-5p markedly suppressed the growth of xenograft tumors in nude mice. These results provide evidence that PHF19 promotes HCC and is regulated by the tumor-suppressor, miR-195-5p.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , Nuclear Proteins/biosynthesis , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , DNA-Binding Proteins , Gene Expression Regulation, Developmental , Liver Neoplasms/pathology , Mice , Nuclear Proteins/genetics , Transcription Factors , Xenograft Model Antitumor Assays
11.
Arterioscler Thromb Vasc Biol ; 35(1): 87-101, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25265644

ABSTRACT

OBJECTIVE: Cardiovascular disease caused by atherosclerosis is the number one cause of death in Western countries and threatens to become the major cause of morbidity and mortality worldwide. Long noncoding RNAs are emerging as new players in gene regulation, but how long noncoding RNAs operate in the development of atherosclerosis remains unclear. APPROACH AND RESULTS: Using microarray analysis, we found that long noncoding RNA RP5-833A20.1 expression was upregulated, whereas nuclear factor IA (NFIA) expression was downregulated in human acute monocytic leukemia macrophage-derived foam cells. Moreover, we showed that long noncoding RNA RP5-833A20.1 may decreases NFIA expression by inducing hsa-miR-382-5p expression in vitro. We found that the RP5-833A20.1/hsa-miR-382-5p/NFIA pathway is essential to the regulation of cholesterol homeostasis and inflammatory responses in human acute monocytic leukemia macrophages. Lentivirus-mediated NFIA overexpression increased high-density lipoprotein cholesterol circulation, reduced low-density lipoprotein cholesterol, and very-low-density lipoprotein cholesterol circulation, decreased circulation of inflammatory cytokines, including interleukin-1ß, interleukin-6, tumor necrosis factor-α, and C-reactive protein, enhanced reverse cholesterol transport, and promoted regression of atherosclerosis in apolipoprotein E-deficient mice. CONCLUSIONS: Our findings indicated that the RP5-833A20.1/miR-382-5p/NFIA pathway was essential to the regulation of cholesterol homeostasis and inflammatory reactions and suggested that NFIA may represent a therapeutic target to ameliorate cardiovascular disease.


Subject(s)
Atherosclerosis/metabolism , Cholesterol/metabolism , Foam Cells/metabolism , Inflammation/immunology , MicroRNAs/metabolism , NFI Transcription Factors/metabolism , RNA, Long Noncoding/metabolism , Signal Transduction , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/prevention & control , Caco-2 Cells , Cholesterol/blood , Cytokines/blood , Disease Models, Animal , Foam Cells/immunology , Gene Expression Profiling/methods , Gene Expression Regulation , Gene Regulatory Networks , Gene Transfer Techniques , Genetic Vectors , Hep G2 Cells , Homeostasis , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/prevention & control , Inflammation Mediators/blood , Lentivirus/genetics , Lipoproteins, LDL/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , NFI Transcription Factors/genetics , Oligonucleotide Array Sequence Analysis , RNA, Long Noncoding/genetics , Receptor, Angiotensin, Type 1 , Time Factors , Transfection
12.
Inflammation ; 38(2): 576-83, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24990545

ABSTRACT

C-reactive protein (CRP) is an acute-phase reactant protein that not only plays a predictive role in determining atherogenesis risk but also represents an active participant in atherogenesis onset and progression. Moreover, an increasing number of studies have reported that oxidized low-density lipoprotein (Ox-LDL) plays a significant role in the initiation and progression of atherosclerosis. However, the effect and underlying mechanism of Ox-LDL on CRP expression remains unclear. THP-1 macrophages were treated with 0, 25, 50, or 100 µg/mL of Ox-LDL for 48 h, or 50 µg/mL of Ox-LDL for 0, 12, 24, and 48 h, respectively. Messenger RNA (mRNA) and protein levels were measured by real-time quantitative PCR and Western blot analysis, respectively. We found that Ox-LDL markedly increased insulin-like growth factor 2 (IGF2) and CRP mRNA and protein levels in a dose- and time-dependent manner in THP-1 macrophages. Treatment with Ox-LDL increased CRP protein expression, and this effect was completely abolished by siRNA-mediated silencing of IGF2 in THP-1 macrophages. Moreover, treatment with pcDNA3.1-IGF2 significantly enhanced CRP protein expression in Ox-LDL-stimulated THP-1 macrophages. CRP expression is upregulated by Ox-LDL through the IGF2 pathway in THP-1 macrophages.


Subject(s)
Atherosclerosis/immunology , C-Reactive Protein/biosynthesis , Insulin-Like Growth Factor II/metabolism , Lipoproteins, LDL/pharmacology , Macrophages/immunology , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Cell Line , Humans , Insulin-Like Growth Factor II/genetics , Lipoproteins, LDL/immunology , RNA Interference , RNA, Messenger/genetics , RNA, Small Interfering
13.
PLoS One ; 9(4): e94997, 2014.
Article in English | MEDLINE | ID: mdl-24733347

ABSTRACT

AIMS: ATP-binding cassette transporter A1 (ABCA1) mediates the efflux of cholesterol and phospholipids to lipid-poor apolipoproteins, which then form nascent HDL, a key step in the mechanism of reverse cholesterol transport (RCT). While a series of microRNAs (miRNAs) have been identified as potent post-transcriptional regulators of lipid metabolism, their effects on ABCA1 function and associated mechanisms remain unclear. METHODS AND RESULTS: ABCA1 was identified as a potential target of miR-144-3p, based on the results of bioinformatic analysis and the luciferase reporter assay, and downregulated after transfection of cells with miR-144-3p mimics, as observed with real-time PCR and western blot. Moreover, miR-144-3p mimics (agomir) enhanced the expression of inflammatory factors, including IL-1ß, IL-6 and TNF-α, in vivo and in vitro, inhibited cholesterol efflux in THP-1 macrophage-derived foam cells, decreased HDL-C circulation and impaired RCT in vivo, resulting in accelerated pathological progression of atherosclerosis in apoE-/- mice. Clinical studies additionally revealed a positive correlation of circulating miR-144-3p with serum CK, CK-MB, LDH and AST in subjects with AMI. CONCLUSIONS: Our findings clearly indicate that miR-144-3p is essential for the regulation of cholesterol homeostasis and inflammatory reactions, supporting its utility as a potential therapeutic target of atherosclerosis and a promising diagnostic biomarker of AMI.


Subject(s)
Cholesterol/metabolism , Cytokines/biosynthesis , Inflammation Mediators/metabolism , MicroRNAs/agonists , Plaque, Atherosclerotic/pathology , ATP Binding Cassette Transporter 1/metabolism , Adult , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/metabolism , Biological Transport , Cell Line , Cytokines/blood , Female , Homeostasis , Humans , Inflammation/pathology , Lipid Metabolism , Lipoproteins/blood , Liver/metabolism , Macrophages/metabolism , Male , Mice, Inbred C57BL , MicroRNAs/blood , Middle Aged , Myocardial Infarction/blood , Myocardial Infarction/genetics , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/genetics
14.
Lipids Health Dis ; 13: 50, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24642298

ABSTRACT

BACKGROUND: Apolipoprotein M (apoM), as a novel apolipoprotein which is mainly expressed in liver and kidney tissues, is associated with development and progression of atherosclerosis and diabetes. Our group have recently shown that Dihydrocapsaicin(DHC)can significantly decrease atherosclerotic plaque formation in apoE-/- mice. However, the effect and possible mechanism of DHC on apoM expression remain unclear. METHODS: HepG2 cells were treated with 0 µM, 25 µM, 50 µM and 100 µM DHC for 24 h or were treated with 100 µM DHC for 0, 6, 12, and 24 h, respectively. The mRNA levels and protein levels were measured by real-time quantitative PCR and western blot analysis, respectively. RESULTS: We found that DHC markedly decreased expression of apoM at both mRNA and protein level in HepG2 cells in a dose-dependent and time-dependent manner. Expression of Foxa2 was decreased while expression of LXRα was increased by DHC treatment in HepG2 cells. In addittion, overexpression of Foxa2 markedly compensated the inhibition effect induced by DHC on apoM expression. LXRα small interfering RNA significantly abolished the inhibition effect which induced by DHC on apoM expression. The liver of C57BL/6 mice treated with DHC had significantly lower expression of apoM. Furthermore, the liver had lower expression of Foxa2 while had higher expression of LXRα. CONCLUSIONS: DHC could down-regulate apoM expression through inhibiting Foxa2 expression and enhancing LXRα expression in HepG2 cells.


Subject(s)
Apolipoproteins/metabolism , Capsaicin/analogs & derivatives , Hepatocyte Nuclear Factor 3-beta/metabolism , Lipocalins/metabolism , Orphan Nuclear Receptors/metabolism , Apolipoproteins M , Capsaicin/pharmacology , Gene Expression/drug effects , Hep G2 Cells , Humans , Liver X Receptors
15.
J Lipid Res ; 55(4): 681-97, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24493833

ABSTRACT

Accumulated evidence shows that G protein-coupled receptor 119 (GPR119) plays a key role in glucose and lipid metabolism. Here, we explored the effect of GPR119 on cholesterol metabolism and inflammation in THP-1 macrophages and atherosclerotic plaque progression in apoE(-/-) mice. We found that oxidized LDL (Ox-LDL) significantly induced long intervening noncoding RNA (lincRNA)-DYNLRB2-2 expression, resulting in the upregulation of GPR119 and ABCA1 expression through the glucagon-like peptide 1 receptor signaling pathway. GPR119 significantly decreased cellular cholesterol content and increased apoA-I-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. In vivo, apoE(-/-) mice were randomly divided into two groups and infected with lentivirus (LV)-Mock or LV-GPR119 for 8 weeks. GPR119-treated mice showed decreased liver lipid content and plasma TG, interleukin (IL)-1ß, IL-6, and TNF-α levels, whereas plasma levels of apoA-I were significantly increased. Consistent with this, atherosclerotic lesion development was significantly inhibited by infection of apoE(-/-) mice with LV-GPR119. Our findings clearly indicate that, Ox-LDL significantly induced lincRNA-DYNLRB2-2 expression, which promoted ABCA1-mediated cholesterol efflux and inhibited inflammation through GPR119 in THP-1 macrophage-derived foam cells. Moreover, GPR119 decreased lipid and serum inflammatory cytokine levels, decreasing atherosclerosis in apoE(-/-) mice. These suggest that GPR119 may be a promising candidate as a therapeutic agent.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Cholesterol/metabolism , RNA, Long Noncoding/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Glucagon/metabolism , Signal Transduction , Animals , Atherosclerosis/blood , Cell Line , Cytokines/blood , Foam Cells/immunology , Foam Cells/metabolism , Glucagon-Like Peptide-1 Receptor , Homeostasis , Humans , Inflammation Mediators/blood , Lipid Metabolism , Lipids/blood , Lipopolysaccharides/pharmacology , Lipoproteins, LDL/physiology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Long Noncoding/metabolism , Receptors, G-Protein-Coupled/genetics , Transcriptional Activation , Up-Regulation
16.
PLoS One ; 9(1): e87313, 2014.
Article in English | MEDLINE | ID: mdl-24498071

ABSTRACT

RATIONALE: It is clear that lipid disorder and inflammation are associated with cardiovascular diseases and underlying atherosclerosis. Nur77 has been shown to be involved in inflammatory response and lipid metabolism. OBJECTIVE: Here, we explored the role of Nur77 in atherosclerotic plaque progression in apoE(-/-) mice fed a high-fat/high cholesterol diet. METHODS AND RESULTS: The Nur77 gene, a nuclear hormone receptor, was highly induced by treatment with Cytosporone B (Csn-B, specific Nur77 agonist), recombinant plasmid over-expressing Nur77 (pcDNA-Nur77), while inhibited by treatment with siRNAs against Nur77 (si-Nur77) in THP-1 macrophage-derived foam cells, HepG2 cells and Caco-2 cells, respectively. In addition, the expression of Nur77 was highly induced by Nur77 agonist Csn-B, lentivirus encoding Nur77 (LV-Nur77), while silenced by lentivirus encoding siRNA against Nur77 (si-Nur77) in apoE(-/-) mice fed a high-fat/high cholesterol diet, respectively. We found that increased expression of Nur77 reduced macrophage-derived foam cells formation and hepatic lipid deposition, downregulated gene levels of inflammatory molecules, adhesion molecules and intestinal lipid absorption, and decreases atherosclerotic plaque formation. CONCLUSION: These observations provide direct evidence that Nur77 is an important nuclear hormone receptor in regulation of atherosclerotic plaque formation and thus represents a promising target for the treatment of atherosclerosis.


Subject(s)
Apolipoproteins E/metabolism , Atherosclerosis/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Plaque, Atherosclerotic/metabolism , Animals , Apolipoproteins E/genetics , Atherosclerosis/etiology , Atherosclerosis/genetics , Blotting, Western , Caco-2 Cells , Cell Line, Tumor , Cholesterol, Dietary/adverse effects , Diet, High-Fat/adverse effects , Disease Progression , Foam Cells/drug effects , Foam Cells/metabolism , Gene Expression/drug effects , Hep G2 Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 4, Group A, Member 1/agonists , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Phenylacetates/pharmacology , Plaque, Atherosclerotic/etiology , Plaque, Atherosclerotic/genetics , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...