Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 276(Pt 2): 133999, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39033898

ABSTRACT

Erythromycin (ERY) molecules are robust to the environment and hard to remove due to their aromatic structure. Nowadays, numerous researches have reported that the ERY amount in water is above the standard level and its removal is necessary. Here, we prepared three solid adsorbents: graphitic carbon nitride (g-C3N4), potassium carrageenan beads (Cr), and graphitic carbon nitride/gum Arabic/potassium carrageenan composite (g-ACr). Several techniques such as XRD, SEM, TEM, TGA, ATR-FTIR, Zeta potential, and N2 adsorption were employed to characterize the fabricated adsorbents. Five essential factors of adsorbent dose, initial ERY concentration, contact time, temperature, and pH were optimized to investigate the batch adsorption of ERY. The maximum adsorption capacity of 356.12 mg/g was attained by g-ACr composite at an adsorbent dose of 1.25 g/L, contact time of 6 h, and pH 7 at 15 °C. The data showed that the experimental findings exhibited the best agreement with Langmuir, Temkin, and DR isotherm models, in addition to the kinetic models of pseudo-second-order, Elovich, and intra-particle diffusion. The evaluated thermodynamic factors designated that the ERY adsorption is endothermic, physisorption, favorable, and spontaneous process. The g-ACr reusability displayed a decline in the adsorption capacity after seven adsorption/desorption runs by 5.7 %. Finally, this work outcomes depict that g-ACr composite is an efficient reusable adsorbent for ERY elimination from wastewater.


Subject(s)
Carrageenan , Erythromycin , Graphite , Thermodynamics , Water Pollutants, Chemical , Water Purification , Adsorption , Graphite/chemistry , Kinetics , Carrageenan/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Erythromycin/chemistry , Hydrogen-Ion Concentration , Water Purification/methods , Nitrogen Compounds/chemistry , Temperature
2.
Int J Biol Macromol ; 255: 128234, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981287

ABSTRACT

In this work, we developed five solid adsorbents such as calcium alginate beads (CG), Araucaria gum (AR) extracted from Araucaria heterophylla tree by chemical precipitation procedures, and Araucaria gum/calcium alginate composite beads (CR21, CR12, and CR11) prepared with different calcium alginate: Araucaria gum ratios (2:1, 1:2, and 1:1, respectively). The synthesized solid adsorbents were characterized utilizing TGA, XRD, nitrogen adsorption/desorption analysis, ATR-FTIR, pHPZC, swelling ratio, SEM, and TEM. Through the batch and column adsorption strategies, we evaluated the effect of adsorbent dose, pH, initial Pb (II) concentration, shaking time, bed height, and flow rate. The data of batch technique indicated that CR11 demonstrated a maximum batch adsorption capacity of 149.95 mg/g at 25 °C. Lead ions adsorption was well fitted by pseudo-second order and Elovich according to kinetic studies, in addition to Langmuir and Temkin models based on adsorption isotherm studies onto all the samples. Thermodynamic investigation showed that Pb (II) adsorption process is an endothermic, physical, and spontaneous process. The highest column adsorption capacity (161.1 mg/g) was achieved by CR11 at a bed height of 3 cm, flow rate of 10 mL/min, and initial Pb+2 concentration of 225 mg/L with 68 min as breakthrough time and 180 min as exhaustion time. Yoon-Nelson and Thomas models applied well the breakthrough curves of Pb (II) column adsorption. The maximum column adsorption capacity was decreased by 11.4 % after four column adsorption/desorption processes. Our results revealed that CR11 had an excellent adsorption capacity, fast kinetics, and good selectivity, emphasizing its potential for its applications in water treatment.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Alginates/chemistry , Kinetics , Lead , Water Pollutants, Chemical/chemistry , Ions , Water Purification/methods , Hydrogen-Ion Concentration
3.
Int J Biol Macromol ; 249: 126075, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37536406

ABSTRACT

This work aims to examine the two techniques' efficiency for the elimination of malachite green (MG) by photocatalytic degradation and adsorption onto synthesized solid nanomaterials. Three solid samples were prepared as calcium alginate (AG), nanotitania (NT), and nanotitania/calcium alginate composite (TG). The morphological and physicochemical characteristics of the solid nanomaterials were investigated by XRD, TGA, DRS, FTIR, pHPZC, nitrogen adsorption/desorption isotherm, SEM, and TEM. The main experimental conditions were determined for sample dose, shaking time, pH, initial malachite green concentration, temperature, ionic strength, and UV lamp power. The resulting data proved that TG attained the higher adsorption capacity (252.52 mg/g) at 40 °C. The adsorption of MG was well fitted by Langmuir, Temkin, Dubinin-Radushkevich, pseudo-second order, intra-particle diffusion, and Elovich models onto all the prepared samples, confirming the endothermic, spontaneous, and favorable adsorption process. The maximum degradation percent (99.6 %) of MG was achieved by using 1.0 g/L as a catalyst dose, 10 mg/L of initial MG concentration, and 33 W for TG. The photodegradation of MG was well fitted by Eyring-Polanyi and Arrhenius models onto the surface of catalyst. The TG reusability resulted in a decrease in the degradation efficiency by 9.8 %, indicating its great capacity as the first nanotitania/calcium alginate nanocomposite used in removing MG from wastewater by two technologies in the same article.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Adsorption , Alginates , Hydrogen-Ion Concentration , Kinetics
4.
Environ Sci Pollut Res Int ; 30(38): 88704-88723, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37440130

ABSTRACT

The objective of this study is to investigate the efficiency of two processes for the amoxicillin removal through static (batch) adsorption and photocatalytic degradation onto the prepared samples. Three solid materials as photocatalyst and/or adsorbent were synthesized viz. nanotitanium dioxide (NT) prepared by the sol-gel method, scallop shells-based nanohydroxyapatite (NP), and nanotitanium dioxide/nanohydroxyapatite composite (NTP). The physicochemical and morphological properties of the prepared samples were tested by TGA, XRD, DRS, ATR-FTIR, nitrogen adsorption/desorption isotherm, zeta potential, SEM, and TEM. The major operational conditions were optimized for catalyst or adsorbent mass, pH, shaking time, initial amoxicillin (AMX) concentration, power of UV lamp, and temperature. The results illuminated that NTP achieved the highest adsorption capacity (88.46 mg/g) at 20 ℃ and AMX adsorption onto all the solid materials was well applied by Langmuir, Temkin, pseudo-second order, and Elovich models. The maximum desorption percent (98%) was attained by acetone. The degradation percent of AMX reached 85.3 and 99.5% for NT and NTP, respectively, using 0.9 g/L of catalyst dosage through 90 min. AMX photodegradation onto the catalysts' surface was well fitted by Langmuir-Hinshelwood, Arrhenius, and Eyring-Polanyi models with endothermic, physical, and nonspontaneous nature of photocatalysis process. NTP acts as a promising adsorbent and photocatalyst for the antibiotics' removal in wastewater.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Amoxicillin/chemistry , Adsorption , Durapatite , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis
5.
RSC Adv ; 13(11): 7280-7292, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36891496

ABSTRACT

Organophosphate insecticides, such as diazinon, have been well investigated to pose health and environmental risks. In this study, ferric-modified nanocellulose composite (FCN) and nanocellulose particles (CN) based on a natural source as a loofah sponge were synthesized to verify their adsorption potential to eliminate diazinon (DZ) from contaminated water. The as-prepared adsorbents were characterized by performing TGA, XRD, FTIR spectroscopy, SEM, TEM, pHPZC, and BET analyses, in which FCN showed high thermal stability, surface area of 82.65 m2 g-1, surface with mesopores, good crystallinity (61.6%), and particle size of 86.0 nm. The results of adsorption tests demonstrated that the maximum Langmuir adsorption capacity (294.98 mg g-1) was exhibited by FCN at 38 °C, pH 7, 1.0 g L-1 of adsorbent dosage, and 20 h of contact shaking time. The effect of adding KCl solution with high ionic strength (1.0 mol L-1) reduced the DZ removal percent by 52.9%. The experimental adsorption data achieved the best fit with all the applied isotherm models with favorable, physical, and endothermic nature of adsorption consistent with thermodynamic data. Pentanol attained higher desorption efficiency (95%) and was used in five adsorption/desorption cycles in which FCN exhibited only an 8.8% decrease in the removal percent of DZ.

SELECTION OF CITATIONS
SEARCH DETAIL