Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 481
Filter
1.
ACS Nano ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361472

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening disease with no early detection, few treatments, and dismal outcomes. Although collagen overdeposition is a hallmark of lung fibrosis, current research mostly focuses on the cellular aspect, leaving collagen, particularly its dynamic remodeling (i.e., degradation and turnover), largely unexplored. Here, using a collagen hybridizing peptide (CHP) that specifically binds unfolded collagen chains, we reveal vast collagen denaturation in human IPF lungs and delineate the spatiotemporal progression of collagen denaturation three-dimensionally within fibrotic lungs in mice. Transcriptomic analyses support that lung collagen denaturation is strongly associated with up-regulated collagen catabolism in mice and patients. We thus show that CHP probing differentiates remodeling responses to antifibrotics and highlights the resolution of established fibrosis by agents up-regulating collagen catabolism. We further develop a radioactive CHP that detects fibrosis in vivo in mice as early as 7 days postlung-injury (Ashcroft score: 2-3) by positron emission tomography (PET) imaging and ex vivo in clinical lung specimens. These findings establish collagen denaturation as a promising marker of fibrotic remodeling for the investigation, diagnosis, and therapeutic development of pulmonary fibrosis.

2.
Acta Pharmacol Sin ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39349764

ABSTRACT

Therapeutic antibodies are at the forefront of biotherapeutics, valued for their high target specificity and binding affinity. Despite their potential, optimizing antibodies for superior efficacy presents significant challenges in both monetary and time costs. Recent strides in computational and artificial intelligence (AI), especially generative diffusion models, have begun to address these challenges, offering novel approaches for antibody design. This review delves into specific diffusion-based generative methodologies tailored for antibody design tasks, de novo antibody design, and optimization of complementarity-determining region (CDR) loops, along with their evaluation metrics. We aim to provide an exhaustive overview of this burgeoning field, making it an essential resource for leveraging diffusion-based generative models in antibody design endeavors.

3.
Medicine (Baltimore) ; 103(37): e39592, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39287260

ABSTRACT

Prostate cancer (PRAD) is recognized as having a significant effect on systemic illnesses. This study examined possible immune cells, metabolic pathways, and genes that may explain the interaction between PRAD and hip pain. We used information retrieved from the Cancer Genome Atlas and the Gene Expression Omnibus databases. To find common genes, we utilized differential expression analysis and weighted gene co-expression network analysis. The genes that were shared were subjected to pathway enrichment studies using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. Additionally, hub genes were analyzed using LASSO regression, and a receiver operating characteristic curve was generated based on the screening outcomes. The genes for the nodes were chosen in a protein-protein interaction network that was built. Single-sample gene-set enrichment analysis was performed to identify the differentially expressed genes. Immunohistochemistry staining confirmed hub gene expression, and single-sample gene-set enrichment analysis assessed immune cell infiltration. We concluded by comparing MAX dimerization protein 3 (MXD3) and MAX interactor 1 (MXI1) expression in tumor tissues using Uniform Manifold Approximation and Projection and violin plots in the Tumor lmmune Single-cell Hub database. After analyzing the intersection of the differentially expressed genes and weighted gene co-expression network analysis-significant module genes, we determined that MXD3 was the best shared diagnostic biomarker for PRAD and hip pain. One potential predictor of PRAD development was the MXI1 node gene, which was found in the protein-protein interaction network. The analyses revealed that MXD3 had a relatively positive correlation with neutrophil and T-helper cell infiltration levels, whereas MXI1 had a negative correlation with mast and Tgd cell levels. Tumors had lower levels of MXI1 expression and higher levels of MXD3 expression compared to normal tissues. Endothelial cells, induced pluripotent stem cells, and smooth muscle cells were all found to express MXI1. This is the first study to investigate the close genetic link between hip pain and PRAD using bioinformatics technologies. The 2 most significant genes involved in crosstalk between PRAD and hip pain were MXD3 and MXI1. The immunological responses triggered by T cells, mast cells, and neutrophils may be crucial in the relationship between PRAD and hip pain.


Subject(s)
Prostatic Neoplasms , Protein Interaction Maps , Humans , Prostatic Neoplasms/genetics , Male , Protein Interaction Maps/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
4.
J Mater Chem B ; 12(35): 8616-8625, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39140256

ABSTRACT

Similar to clinically applied thermal ablation techniques, the cellular necrosis that occurs during photothermal tumor therapy (PTT) can induce inflammatory response, severely compromising the therapeutic efficacy and clinical translation of the PTT. Inspired by the remarkable ROS-scavenging activity and high photothermal efficiency of molybdenum-based polyoxometalate (POM) and the immunostimulatory effect of cyclic dinucleotides (CDNs), a NIR-responsive and injectable DNA-mediated hybrid hydrogel (CDN-POM) has been developed. The hydrogels have superior photothermal efficiency (43.41%) to POM, impressive anti-inflammatory capability and prolonged intratumoral CDN-releasing behavior, thus enabling synergistic anti-tumor therapeutic outcomes. Meanwhile, local treatment induced by CDN-POM hydrogels displays minimal side effects on normal tissue. Taking advantage of the high phototherapeutic effect, ROS-scavenging activity and sustained CDN release of CDN-POM hydrogels, a novel combined approach that integrates photothermal therapy and immunotherapy of breast tumor is successfully pioneered.


Subject(s)
Hydrogels , Immunotherapy , Infrared Rays , Hydrogels/chemistry , Immunotherapy/methods , Animals , Mice , Humans , Molybdenum/chemistry , Molybdenum/pharmacology , Female , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Photothermal Therapy , Phototherapy/methods , Cell Proliferation/drug effects , Particle Size , Injections , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology
5.
Thorac Cancer ; 15(27): 1958-1967, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39140206

ABSTRACT

BACKGROUND: Lymph node (LN) metastasis is a significant prognostic factor for esophageal squamous cell carcinoma (ESCC), and there are no satisfactory methods for accurately predicting metastatic LNs. The present study aimed to assess the efficacy of 99mTc-3PRGD2 single-photon emission computed tomography (SPECT)/computed tomography (CT) for diagnosing metastatic LNs in ESCC. METHODS: A total of 15 enrolled patients with ESCC underwent 99mTc-3PRGD2 SPECT/CT and 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) examinations preoperatively. High-definition bone carving reconstruction technology (HD-xSPECT Bone) was applied to quantitatively assess the LN's SUVmax via SPECT/CT. The two methods were compared for diagnosing metastatic LNs with pathology as the gold standard. RESULTS: Among 15 patients, 23 metastatic lymph node stations (mLNSs) were predicted by SPECT/CT, with a mean SUVmax of 2.71 ± 1.34, of which 15 were pathologically confirmed; 32 mLNSs were predicted by PET/CT with a mean SUVmax of 4.41 ± 4.02, of which 17 were pathologically confirmed. The sensitivity, specificity, accuracy, positive predictive value and negative predictive value of SPECT/CT for diagnosing metastatic LNs were 62.50%, 91.30%, 85.34%, 65.22%, and 90.32%, respectively, and those of PET/CT were 70.83%, 83.70%, 81.03%, 53.13%, and 91.67%, respectively. There was no significant difference in sensitivity (p = 0.061) or specificity (p = 0.058) between the two methods. The AUCSPECT/CT was 0.816 and the SUVmax threshold was 2.5. CONCLUSION: 99mTc-3PRGD2 SPECT/CT might be an effective method for diagnosing metastatic LNs in ESCC, especially in combination with HD-xSPECT Bone. The diagnostic efficiency of this method was noninferior to that of 18F-FDG PET/CT. The SUVmax threshold of 2.5 showed the highest agreement with the pathology findings.


Subject(s)
Esophageal Squamous Cell Carcinoma , Lymphatic Metastasis , Humans , Male , Female , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/secondary , Middle Aged , Lymphatic Metastasis/diagnostic imaging , Aged , Prospective Studies , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/pathology , Single Photon Emission Computed Tomography Computed Tomography/methods , Positron Emission Tomography Computed Tomography/methods , Organotechnetium Compounds , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Adult , Radiopharmaceuticals
6.
Sci Rep ; 14(1): 18036, 2024 08 04.
Article in English | MEDLINE | ID: mdl-39098988

ABSTRACT

Prostate cancer, one of the most prevalent malignancies among men worldwide, is intricately linked with androgen signaling, a key driver of its pathogenesis and progression. Understanding the diverse expression patterns of androgen-responsive genes holds paramount importance in unraveling the biological intricacies of this disease and prognosticating patient outcomes. In this study, utilizing consensus clustering analysis based on the expression profiles of androgen-responsive genes, prostate cancer patients from the TCGA database were stratified into two distinct subtypes, denoted as C1 and C2. Notably, the C1 subtype demonstrates a significant upregulation of certain genes, such as CGA and HSD17B12, along with a shorter progression-free survival duration, indicating a potentially unfavorable prognosis. Further analyses elucidated the immune infiltration disparities, mutation landscapes, and gene functional pathways characteristic of each subtype. Through integrated bioinformatics approaches and machine learning techniques, key genes such as BIRC5, CENPA, and MMP11 were identified as potential therapeutic targets, providing novel insights into tailored treatment strategies. Additionally, single-cell transcriptome analysis shed light on the heterogeneous expression patterns of these genes across different cell types within the tumor microenvironment. Furthermore, virtual screening identified candidate drugs targeting the BIRC5 receptor, offering promising avenues for drug development. Collectively, these findings deepen our understanding of prostate cancer biology, paving the way for personalized therapeutic interventions and advancing the quest for more effective treatments in prostate cancer management.


Subject(s)
Androgens , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , Tumor Microenvironment , Humans , Male , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Androgens/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Profiling , Prognosis , Transcriptome , Computational Biology/methods
7.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-39073916

ABSTRACT

Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is associated with a loss or an imbalance of host-microorganism interactions. However, such interactions at protein levels remain largely unknown. Here, we applied a depletion-assisted metaproteomics approach to obtain in-depth host-microbiome association networks of IBD, where the core host proteins shifted from those maintaining mucosal homeostasis in controls to those involved in inflammation, proteolysis, and intestinal barrier in IBD. Microbial nodes such as short-chain fatty-acid producer-related host-microbial crosstalk were lost or suppressed by inflammatory proteins in IBD. Guided by protein-protein association networks, we employed proteomics and lipidomics to investigate the effects of UC-related core proteins S100A8, S100A9, and cytokines (IL-1ß, IL-6, and TNF-α) on gut bacteria. These proteins suppressed purine nucleotide biosynthesis in stool-derived in vitro communities, which was also reduced in IBD stool samples. Single species study revealed that S100A8, S100A9, and cytokines can synergistically or antagonistically alter gut bacteria intracellular and secreted proteome, with combined S100A8 and S100A9 potently inhibiting beneficial Bifidobacterium adolescentis. Furthermore, these inflammatory proteins only altered the extracellular but not intracellular proteins of Ruminococcus gnavus. Generally, S100A8 induced more significant bacterial proteome changes than S100A9, IL-1ß, IL-6, and TNF-α but gut bacteria degrade significantly more S100A8 than S100A9 in the presence of both proteins. Among the investigated species, distinct lipid alterations were only observed in Bacteroides vulgatus treated with combined S100A8, S100A9, and cytokines. These results provided a valuable resource of inflammatory protein-centric host-microbial molecular interactions.


Subject(s)
Colitis, Ulcerative , Cytokines , Gastrointestinal Microbiome , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/metabolism , Humans , Cytokines/metabolism , Calgranulin B/metabolism , Calgranulin A/metabolism , Proteomics , Feces/microbiology , Ruminococcus/metabolism , Host Microbial Interactions , Clostridiales
8.
NPJ Biofilms Microbiomes ; 10(1): 64, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080326

ABSTRACT

Plant-sucking insects have intricate associations with a diverse array of microorganisms to facilitate their adaptation to specific ecological niches. The midgut of phytophagous true bugs is generally structured into four distinct compartments to accommodate their microbiota. Nevertheless, there is limited understanding regarding the origins of these gut microbiomes, the mechanisms behind microbial community assembly, and the interactions between gut microbiomes and their insect hosts. In this study, we conducted a comprehensive survey of microbial communities within the midgut compartments of a bean bug Riptortus pedestris, soybean plant, and bulk soil across 12 distinct geographical fields in China, utilizing high-throughput sequencing of the 16 S rRNA gene. Our findings illuminated that gut microbiota of the plant-sucking insects predominantly originated from the surrounding soil environment, and plants also play a subordinate role in mediating microbial acquisition for the insects. Furthermore, our investigation suggested that the composition of the insect gut microbiome was probably shaped by host selection and/or microbe-microbe interactions at the gut compartment level, with marginal influence from soil and geographical factors. Additionally, we had unveiled a noteworthy dynamic in the acquisition of core bacterial taxa, particularly Burkholderia, which were initially sourced from the environment and subsequently enriched within the insect midgut compartments. This bacterial enrichment played a significant role in enhancing insect host reproduction. These findings contribute to our evolving understanding of microbiomes within the insect-plant-soil ecosystem, shedding additional light on the intricate interactions between insects and their microbiomes that underpin the ecological significance of microbial partnerships in host adaptation.


Subject(s)
Bacteria , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Soil Microbiology , Animals , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , China , Glycine max/microbiology , High-Throughput Nucleotide Sequencing , Heteroptera/microbiology , Heteroptera/physiology , Reproduction , Phylogeny , Host Microbial Interactions , Burkholderia/genetics , Burkholderia/physiology , Burkholderia/classification
9.
J Environ Manage ; 366: 121661, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38991353

ABSTRACT

Arsenic (As) and cadmium (Cd) accumulation in rice grains is a global food safety issue, and various methods and materials have been used to remove or reduce As and Cd in agricultural soils and rice grains. Despite the availability of synthesized materials capable of simultaneous As and Cd reduction from soil and rice grains, the contributions, efficiency, and main ingredients of the materials for As and Cd immobilization remain unclear. The present study first summarized the biogeochemistry of As and Cd in paddy soils and their transfer in the soil-food-human continuum. We also reviewed a series of reported inorganic and organic materials for simultaneous immobilization of As and Cd in paddy soils, and their reduction efficiency of As and Cd bioavailability were listed and compared. Based on the abovementioned materials, the study conducted a meta-analysis of 38 articles with 2565 observations to quantify the impacts of materials on simultaneous As and Cd reduction from soil and rice grains. Meta-analysis results showed that combining organic and inorganic amendments corresponded to effect sizes of -62.3% and -67.8% on As and Cd accumulation in rice grains, while the effect sizes on As and Cd reduction in paddy soils were -44.2% and -46.2%, respectively. Application of Fe based materials significantly (P < 0.05) reduced As (-54.2%) and Cd (-74.9%), accounting for the highest immobilization efficiency of As and Cd in rice grain among all the reviewed materials, outweighing S, Mn, P, Si, and Ca based materials. Moreover, precipitation, surface complexation, ion exchange, and electrostatic attraction mechanisms were involved in the co-immobilization tactics. The present study underlines the application of combined organic and inorganic amendments in simultaneous As and Cd immobilization. It also highlighted that employing Fe-incorporated biochar material may be a potential strategy for co-mitigating As and Cd pollution in paddy soils and accumulation in rice grains.


Subject(s)
Arsenic , Cadmium , Oryza , Soil Pollutants , Soil , Soil/chemistry , Soil Pollutants/analysis , Arsenic/analysis , Agriculture
10.
J Hazard Mater ; 477: 135244, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39032176

ABSTRACT

The co-contamination of arsenic (As) and cadmium (Cd) in rice fields presents a global imperative for resolution. However, understanding the complex microbially driven geochemical processes and network connectivity crucial for As and Cd bioavailability under the frequent redox transitions in rice fields remains limited. Here, we conducted a series of microcosm experiments, using flooding and drainage, alongside fertilization treatments to emulate different redox environment in paddy soils. Soil As significantly reduced in drained conditions following applications of biochar or calcium-magnesium-phosphate (CMP) fertilizers by 26.3 % and 31.2 %, respectively, with concurrent decreases in Cd levels. Utilizing geochemical models, we identified the primary redox cycles dynamically altering during flooding (Fe and S cycles) and drainage (Fe, Mn, and N cycles). PLS-SEM elucidated 76 % and 61 % of the variation in Cd and As through Mn and N cycles. Functional genes implicated in multi-element cycles were analyzed, revealing a significantly higher abundance of assimilatory N reduction genes (nasA, nirA/B, narB) in drained soil, whereas an increase in ammonia-oxidizing genes (amoA/B) and a decrease in nitrate reduction to ammonium genes were observed after CMP fertilizer application. Biochar application led to significant enrichment of the substrate-binding protein of the Mn transport gene (mntC). Moreover, Fe transport genes were enriched after biochar or CMP application compared to drained soils. Among 40 high-quality metagenome-assembled genomes (MAGs), microbial predictors associated with low Cd and As contents across different treatments were examined. Bradyrhizobacea harbored abundant Mn and FeIII transport genes, while Nitrososphaeraceae carried nitrification-related genes. Two MAGs affiliated with Caulobacteraceae, carrying diverse Fe transport genes, were enriched in biochar-applied soils. Therefore, applying CMP fertilizer or biochar in aerobic rice fields can synergistically reduce the bioavailability of Cd and As by specifically enhancing the circulation of essential elements.


Subject(s)
Arsenic , Cadmium , Fertilizers , Iron , Manganese , Oryza , Soil Microbiology , Soil Pollutants , Arsenic/metabolism , Oryza/metabolism , Oryza/growth & development , Soil Pollutants/metabolism , Manganese/chemistry , Iron/chemistry , Iron/metabolism , Nitrogen/metabolism , Nitrogen/chemistry , Charcoal/chemistry , Bacteria/metabolism , Bacteria/genetics , Oxidation-Reduction , Water/chemistry , Soil/chemistry
12.
Biochem Pharmacol ; 226: 116338, 2024 08.
Article in English | MEDLINE | ID: mdl-38848780

ABSTRACT

ITFG2, as an immune-modulatory intracellular protein that modulate the fate of B cells and negatively regulates mTORC1 signaling. ITFG2 is highly expressed in the heart, but its pathophysiological function in heart disease is unclear. In this study, we found that in MI mice, overexpression of ITFG2 via an AAV9 vector significantly reduced the infarct size and ameliorated cardiac function. Knockdown of endogenous ITFG2 by shRNA partially aggravated ischemia-induced cardiac dysfunction. In cardiac-specific ITFG2 transgenic (TG) mice, myocardial infarction size was smaller, eject fraction (EF) and fractional shortening (FS) was higher compared to those in wild-type (WT) mice, suggesting ITFG2 reversed cardiac dysfunction induced by MI. In hypoxic neonatal cardiomyocytes (NMCMs), overexpression of ITFG2 maintained mitochondrial function by increasing intracellular ATP production, reducing ROS levels, and preserving the mitochondrial membrane potential (MMP). Overexpression of ITFG2 reversed the mitochondrial respiratory dysfunction in NMCMs induced by hypoxia. Knockdown of endogenous ITFG2 by siRNA did the opposite. Mechanism, ITFG2 formed a complex with NEDD4-2 and ATP 5b and inhibited the binding of NEDD4-2 with ATP 5b leading to the reduction ubiquitination of ATP 5b. Our findings reveal a previously unknown ability of ITFG2 to protect the heart against ischemic injury by interacting with ATP 5b and thereby regulating mitochondrial function. ITFG2 has promise as a novel strategy for the clinical management of MI.


Subject(s)
Mitochondria, Heart , Myocardial Infarction , Myocytes, Cardiac , Animals , Male , Mice , Cells, Cultured , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Heart/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/immunology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
13.
Hepatology ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900411

ABSTRACT

BACKGROUND AND AIMS: Surgical resection serves as the principal curative strategy for HCC, yet the incidence of postoperative recurrence remains alarmingly high. However, the spatial molecular structural alterations contributing to postoperative recurrence in HCC are still poorly understood. APPROACH AND RESULTS: We employed imaging mass cytometry to profile the in situ expression of 33 proteins within 358,729 single cells of 92 clinically annotated surgical specimens from 46 patients who were treated with surgical resections for primary and relapsed tumors. We revealed the recurrence progression of HCC was governed by the dynamic spatial distribution and functional interplay of diverse cell types across adjacent normal, tumor margin, and intratumor regions. Our exhaustive analyses revealed an aggressive, immunosuppression-related spatial ecosystem in relapsed HCC. Additionally, we illustrated the prominent implications of the tumor microenvironment of tumor margins in association with relapse HCC. Moreover, we identified a novel subpopulation of dendritic cells (PDL1 + CD103 + DCs) enriched in the peritumoral area that correlated with early postoperative recurrence, which was further validated in an external cohort. Through the analysis of single-cell RNA sequencing data, we found the interaction of PDL1 + CD103 + DCs with regulatory T cells and exhausted T cells enhanced immunosuppression and immune escape through multiple ligand-receptor pathways. CONCLUSIONS: We comprehensively depicted the spatial landscape of single-cell dynamics and multicellular architecture within primary and relapsed HCC. Our findings highlight spatial organization as a prominent determinant of HCC recurrence and provide valuable insight into the immune evasion mechanisms driving recurrence.

14.
Autophagy ; 20(10): 2146-2163, 2024 10.
Article in English | MEDLINE | ID: mdl-38797513

ABSTRACT

The dysregulation of membrane protein expression has been implicated in tumorigenesis and progression, including hepatocellular carcinoma (HCC). In this study, we aimed to identify membrane proteins that modulate HCC viability. To achieve this, we performed a CRISPR activation screen targeting human genes encoding membrane-associated proteins, revealing TMX2 as a potential driver of HCC cell viability. Gain- and loss-of-function experiments demonstrated that TMX2 promoted growth and tumorigenesis of HCC. Clinically, TMX2 was an independent prognostic factor for HCC patients. It was significantly upregulated in HCC tissues and associated with poor prognosis of HCC patients. Mechanistically, TMX2 was demonstrated to promote macroautophagy/autophagy by facilitating KPNB1 nuclear export and TFEB nuclear import. In addition, TMX2 interacted with VDAC2 and VADC3, assisting in the recruitment of PRKN to defective mitochondria to promote cytoprotective mitophagy during oxidative stress. Most interestingly, HCC cells responded to oxidative stress by upregulating TMX2 expression and cell autophagy. Knockdown of TMX2 enhanced the anti-tumor effect of lenvatinib. In conclusion, our findings emphasize the pivotal role of TMX2 in driving the HCC cell viability by promoting both autophagy and mitophagy. These results suggest that TMX2 May serve as a prognostic marker and promising therapeutic target for HCC treatment.Abbreviation: CCCP: Carbonyl cyanide 3-chlorophenylhydrazone; Co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeat; ER: endoplasmic reticulum; HCC: hepatocellular carcinoma; KPNB1: karyopherin subunit beta 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; TFEB: transcription factor EB; TMX2: thioredoxin related transmembrane protein 2; VDAC2: voltage dependent anion channel 2; VDAC3: voltage dependent anion channel 3; WB: western blot.


Subject(s)
Autophagy , Carcinoma, Hepatocellular , Cell Survival , Liver Neoplasms , Membrane Proteins , Mitophagy , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Mitophagy/drug effects , Mitophagy/genetics , Mitophagy/physiology , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Autophagy/physiology , Autophagy/genetics , Cell Survival/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Voltage-Dependent Anion Channel 2/metabolism , Voltage-Dependent Anion Channel 2/genetics , Cell Line, Tumor , Animals , Mice , Oxidative Stress , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Mitochondria/metabolism , Male , Gene Expression Regulation, Neoplastic , Mice, Nude
15.
Cell Discov ; 10(1): 48, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710677

ABSTRACT

Melanin-concentrating hormone (MCH) is a cyclic neuropeptide that regulates food intake, energy balance, and other physiological functions by stimulating MCHR1 and MCHR2 receptors, both of which are class A G protein-coupled receptors. MCHR1 predominately couples to inhibitory G protein, Gi/o, and MCHR2 can only couple to Gq/11. Here we present cryo-electron microscopy structures of MCH-activated MCHR1 with Gi and MCH-activated MCHR2 with Gq at the global resolutions of 3.01 Å and 2.40 Å, respectively. These structures reveal that MCH adopts a consistent cysteine-mediated hairpin loop configuration when bound to both receptors. A central arginine from the LGRVY core motif between the two cysteines of MCH penetrates deeply into the transmembrane pocket, triggering receptor activation. Integrated with mutational and functional insights, our findings elucidate the molecular underpinnings of ligand recognition and MCH receptor activation and offer a structural foundation for targeted drug design.

16.
Front Vet Sci ; 11: 1389264, 2024.
Article in English | MEDLINE | ID: mdl-38756518

ABSTRACT

The genus Hepacivirus comprises a diverse range of genetically distinct viruses that infect both mammalian and non-mammalian hosts, with some posing significant risks to human and animal health. Members of the genus Hepacivirus are typically classified into fourteen species (Hepacivirus A-N), with ongoing discoveries of novel hepaciviruses like Hepacivirus P and Hepacivirus Q. In this study, a novel Hepacivirus was identified in duck liver samples collected from live poultry markets in Hunan province, China, using unbiased high-throughput sequencing and meta-transcriptomic analysis. Through sequence comparison and phylogenetic analysis, it was determined that this newly discovered Hepacivirus belongs to a new subspecies of Hepacivirus Q. Moreover, molecular screening revealed the widespread circulation of this novel virus among duck populations in various regions of Hunan province, with an overall prevalence of 13.3%. These findings significantly enhence our understanding of the genetic diversity and evolution of hepaciviruses, emphasizing the presence of genetically diverse hepaciviruses duck populations in China. Given the broad geographical distribution and relatively high positive rate, further investigations are essential to explore any potential associations between Hepacivirus Q and duck-related diseases.

17.
Alcohol Clin Exp Res (Hoboken) ; 48(7): 1278-1288, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740544

ABSTRACT

BACKGROUND: Millions of people struggle with alcohol use disorder (AUD). Abrupt abstinence after a period of chronic alcohol use can precipitate the alcohol withdrawal syndrome (AWS), which includes hyperexcitability and, potentially, seizures. We have shown that T-type Ca2+ channels are novel, sensitive targets of alcohol, an effect that is dependent upon protein kinase C (PKC). The purpose of this study was to (1) understand midline thalamic neuronal hyperexcitability during alcohol withdrawal and its dependence on PKC; (2) characterize T channel functional changes using both current clamp and voltage clamp methods; and (3) determine which PKC isoform may be responsible for alcohol withdrawal (WD) effects. METHODS: Whole-cell patch clamp recordings were performed in midline thalamic neurons in brain slices prepared from C57bl/6 mice that underwent chronic intermittent alcohol exposure in a standard vapor chamber model. The recordings were compared to those from air-exposed controls. T-channel inactivation curves and burst responses were acquired through voltage-clamp and current-clamp recordings, respectively. RESULTS: Whole-cell voltage clamp recordings of native T-type current exhibited a depolarizing shift in the voltage-dependency of inactivation during alcohol withdrawal compared to air-exposed controls. A PKCε translocation inhibitor peptide mitigated this change. Current clamp recordings demonstrated more spikes per burst during alcohol withdrawal. Consistent with voltage clamp findings, the PKCɛ translocation inhibitor peptide reduced the number of spikes per burst after WD. CONCLUSION: We found that alcohol WD produces T channel-mediated hyperexcitability in the midline thalamus, produced in part by a shift in the inactivation curve consistent with greater availability of T current. WD effects on T current inactivation were reduced to control levels by blocking PKCε translocation. Our results demonstrate that PKCε translocation plays an important role in the regulation of alcohol withdrawal-induced hyperexcitability in midline thalamic circuitry.

18.
Adv Healthc Mater ; 13(19): e2304488, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38588047

ABSTRACT

Transcatheter arterial chemoembolization (TACE) has proven effective in blocking tumor-supplied arteries and delivering localized chemotherapeutic treatment to combat tumors. However, traditional embolic TACE agents exhibit certain limitations, including insufficient chemotherapeutic drug-loading and sustained-release capabilities, non-biodegradability, susceptibility to aggregation, and unstable mechanical properties. This study introduces a novel approach to address these shortcomings by utilizing a complex coacervate as a liquid embolic agent for tumor chemoembolization. By mixing oppositely charged quaternized chitosan (QCS) and gum arabic (GA), a QCS/GA polymer complex coacervate with shear-thinning property is obtained. Furthermore, the incorporation of the contrast agent Iohexol (I) and the chemotherapeutic doxorubicin (DOX) into the coacervate leads to the development of an X-ray-opaque QCS/GA/I/DOX coacervate embolic agent capable of carrying drugs. This innovative formulation effectively embolizes the renal arteries without recanalization. More importantly, the QCS/GA/I/DOX coacervate can successfully embolize the supplying arteries of the VX2 tumors in rabbit ear and liver. Coacervates can locally release DOX to enhance its therapeutic effects, resulting in excellent antitumor efficacy. This coacervate embolic agent exhibits substantial potential for tumor chemoembolization due to its shear-thinning performance, excellent drug-loading and sustained-release capabilities, good biocompatibility, thrombogenicity, biodegradability, safe and effective embolic performance, and user-friendly application.


Subject(s)
Chemoembolization, Therapeutic , Chitosan , Doxorubicin , Animals , Rabbits , Chemoembolization, Therapeutic/methods , Doxorubicin/pharmacology , Doxorubicin/chemistry , Chitosan/chemistry , Gum Arabic/chemistry , Cell Line, Tumor , Iohexol/chemistry , Iohexol/analogs & derivatives , Iohexol/pharmacology , Contrast Media/chemistry , Contrast Media/pharmacology , Mice
19.
Chin J Integr Med ; 30(10): 917-926, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38532152

ABSTRACT

OBJECTIVE: To explore the protective effect and the underlying mechanism of silibinin (SIB), one of the active compounds from Silybum marianum (L.) Gaertn in endotoxemia. METHODS: Mouse peritoneal macrophage were isolated via intraperitoneally injection of BALB/c mice with thioglycolate medium. Cell viability was assessed using the cell counting kit-8, while cytotoxicity was determined through lactate dehydrogenase cytotoxicity assay. The protein expressions of interleukin (IL)-1 α, IL-1 ß, and IL-18 were determined by enzyme-linked immunosorbent assay. Intracellular lipopolysaccharide (LPS) levels were measured by employing both the limulus amoebocyte lysate assay and flow cytometry. Additionally, proximity ligation assay was employed for the LPS and caspase-11 interaction. Mice were divided into 4 groups: the control, LPS, high-dose-SIB (100 mg/kg), and low-dose-SIB (100 mg/kg) groups (n=8). Zebrafish were divided into 4 groups: the control, LPS, high-dose-SIB (200 εmol/L), and low-dose-SIB (100 εmol/L) groups (n=30 for survival experiment and n=10 for gene expression analysis). The expression of caspase-11, gasdermin D (GSDMD), and N-GSDMD was determined by Western blot and the expressions of caspy2, gsdmeb, and IL-1 ß were detected using quantitative real-time PCR. Histopathological observation was performed through hematoxylineosin staining, and protein levels in bronchoalveolar lavage fluid were quantified using the bicinchoninicacid protein assay. RESULTS: SIB noticeably decreased caspase-11 and GSDMD-mediated pyroptosis and suppressed the secretion of IL-1 α, IL-1 ß, and IL-18 induced by LPS (P<0.05). Moreover, SIB inhibited the translocation of LPS into the cytoplasm and the binding of caspase-11 and intracellular LPS (P<0.05). SIB also attenuated the expression of caspase-11 and N-terminal fragments of GSDMD, inhibited the relative cytokines, prolonged the survival time, and up-regulated the survival rate in the endotoxemia models (P<0.05). CONCLUSIONS: SIB can inhibit pyroptosis in the LPS-mediated endotoxemia model, at least in part, by inhibiting the caspase-11-mediated cleavage of GSDMD. Additionally, SIB inhibits the interaction of LPS and caspase-11 and inhibits the LPS-mediated up-regulation of caspase-11 expression, which relieves caspase-11-dependent cell pyroptosis and consequently attenuates LPS-mediated lethality.


Subject(s)
Endotoxemia , Lipopolysaccharides , Mice, Inbred BALB C , Pyroptosis , Silybin , Pyroptosis/drug effects , Endotoxemia/drug therapy , Endotoxemia/chemically induced , Animals , Silybin/pharmacology , Caspases, Initiator/metabolism , Zebrafish , Mice , Male , Protective Agents/pharmacology , Cell Survival/drug effects , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism
20.
Int J Radiat Oncol Biol Phys ; 119(5): 1590-1600, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38432286

ABSTRACT

PURPOSE: To develop and externally validate an automatic artificial intelligence (AI) tool for delineating gross tumor volume (GTV) in patients with esophageal squamous cell carcinoma (ESCC), which can assist in neo-adjuvant or radical radiation therapy treatment planning. METHODS AND MATERIALS: In this multi-institutional study, contrast-enhanced CT images from 580 eligible ESCC patients were retrospectively collected. The GTV contours delineated by 2 experts via consensus were used as ground truth. A 3-dimensional deep learning model was developed for GTV contouring in the training cohort and internally and externally validated in 3 validation cohorts. The AI tool was compared against 12 board-certified experts in 25 patients randomly selected from the external validation cohort to evaluate its assistance in improving contouring performance and reducing variation. Contouring performance was measured using dice similarity coefficient (DSC) and average surface distance. Additionally, our previously established radiomics model for predicting pathologic complete response was used to compare AI-generated and ground truth contours, to assess the potential of the AI contouring tool in radiomics analysis. RESULTS: The AI tool demonstrated good GTV contouring performance in multicenter validation cohorts, with median DSC values of 0.865, 0.876, and 0.866 and median average surface distance values of 0.939, 0.789, and 0.875 mm, respectively. Furthermore, the AI tool significantly improved contouring performance for half of 12 board-certified experts (DSC values, 0.794-0.835 vs 0.856-0.881, P = .003-0.048), reduced the intra- and interobserver variations by 37.4% and 55.2%, respectively, and saved contouring time by 77.6%. In the radiomics analysis, 88.7% of radiomic features from ground truth and AI-generated contours demonstrated stable reproducibility, and similar pathologic complete response prediction performance for these contours (P = .430) was observed. CONCLUSIONS: Our AI contouring tool can improve GTV contouring performance and facilitate radiomics analysis in ESCC patients, which indicates its potential for GTV contouring during radiation therapy treatment planning and radiomics studies.


Subject(s)
Deep Learning , Esophageal Neoplasms , Tomography, X-Ray Computed , Tumor Burden , Humans , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/pathology , Tomography, X-Ray Computed/methods , Male , Female , Retrospective Studies , Middle Aged , Contrast Media , Aged , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Esophageal Squamous Cell Carcinoma/radiotherapy , Esophageal Squamous Cell Carcinoma/pathology , Radiotherapy Planning, Computer-Assisted/methods , Adult
SELECTION OF CITATIONS
SEARCH DETAIL