Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38398956

ABSTRACT

We have developed a manufacturing process for micromirrors based on microelectromechanical systems (MEMS) technology. The process involves designing an electrostatic vertically comb-driven actuator and utilizing a self-alignment process to produce a height difference between the movable comb structure and the fixed comb structure of the micromirror. To improve the stability of the micromirror, we propose four instability models in micromirror operation with the quasi-static driving principle and structure of the micromirror considered, which can provide a basic guarantee for the performance of vertical comb actuators. This analysis pinpoints factors leading to instability, including the left and right gap of the movable comb, the torsion beams of the micromirror, and the comb-to-beams distance. Ultimately, the voltages at which device failure occurs can be determined. We successfully fabricated a one-dimensional micromirror featuring a 0.8 mm mirror diameter and a 30 µm device layer thickness. The height difference between the movable and fixed comb structures was 10 µm. The micromirror was able to achieve a static mechanical angle of 2.25° with 60 V@DC. Stable operation was observed at voltages below 60 V, in close agreement with the theoretical calculations and simulations. At the driving voltage of 80 V, we observed the longitudinal displacement movement of the comb fingers. Furthermore, at a voltage of 129 V, comb adhesion occurred, resulting in device failure. This failure voltage corresponds to the lateral torsional failure voltage.

2.
Micromachines (Basel) ; 14(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37630025

ABSTRACT

The Micro-Electro-Mechanical-System (MEMS) micromirror has shown great advantages in Light Detection and Ranging (LiDAR) for autonomous vehicles. The equipment on vehicles is usually exposed to environmental vibration that may degrade or even destroy the flexure of the micromirror for its delicate structure. In this work, a mechanical low-pass filter (LPF) acting as a vibration isolator for a micromirror is proposed. The research starts with the evaluation of vibration influences on the micromirror by theoretical calculation and simulation. The results illustrate that mechanical load concentrates at the slow flexure of the micromirror as it is excited to resonate in second-order mode (named piston mode) in Z-direction vibration. A specific LPF for the micromirror is designed to attenuate the response to high-frequency vibration, especially around piston mode. The material of the LPF is a beryllium-copper alloy, chosen for its outstanding properties of elasticity, ductility, and fatigue resistance. To measure the mechanical load on the micromirror in practical, the on-chip piezoresistive sensor is utilized and a relevant test setup is built to validate the effect of the LPF. Micromirrors with or without the LPF are both tested under 10 g vibration in the Z-direction. The sensor output of the device with the LPF is 35.9 mV in piston mode, while the device without the LPF is 70.42 mV. The attenuation ratio is 0.51. This result demonstrates that the LPF structure can effectively reduce the stress caused by piston mode vibration.

SELECTION OF CITATIONS
SEARCH DETAIL