Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters











Publication year range
1.
Inorg Chem ; 63(39): 17983-17992, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39287976

ABSTRACT

Two dual fluorescent/phosphorescent tris-heteroleptic mononuclear Ru(ΙΙ) complexes (2 and 3) were designed and applied in amyloid-ß (Aß) sensing. These complexes have a general formula of [Ru(phen)(dppz)(L)](PF6)2, where L is (2-pyrazinyl)(2-pyridyl)(methyl)amine (H-L) with different substituents (-OMe for 2, -H for 3), phen is 1,10-phenanthroline, and dppz is dipyridophenazine, respectively. Compared with the previously reported ratiometric probe 1 with a di(pyrid-2-yl)(methyl)amine ligand, complex 2 can be employed for not only ratiometric emissive detection of Aß aggregation but also ratiometric imaging detection of Aß fibrils. In ratiometric emissive detection, as the incubation time of the Aß sample (Aß40 and Aß42) was prolonged, a new phosphorescence emission band appeared with gradual enhancement of the emission intensity, while the fluorescence emission was basically unchanged, which could be treated as an intrinsic internal reference signal. In comparison, a larger ratiometric photoluminescence enhancement (I640/I440) was observed for Aß40 aggregation with respect to Aß42. In ratiometric imaging detection, the imaging signals obtained from the phosphorescence emission are much brighter than the fluorescence emission in both Aß40 and Aß42 fibrils. As indicated by molecular docking results, stronger interactions were found between complex 2 with Aß40 fibrils, which included π/π, π/C-H, and π/H interactions between bidentate ligands dppz and phen with amino acid residues. Moreover, computational calculations were carried out to assist the interpretation of these experimental findings.


Subject(s)
Amyloid beta-Peptides , Coordination Complexes , Ruthenium , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/analysis , Ruthenium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Molecular Structure , Molecular Docking Simulation , Optical Imaging , Peptide Fragments/chemistry , Peptide Fragments/analysis
2.
ACS Appl Mater Interfaces ; 16(37): 49594-49601, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39230599

ABSTRACT

Covalent organic framework (COF) film with electrofluorochromic (EFC) and electrochromic (EC) properties has been synthesized by using triphenylamine-based monomers. The film exhibited a high maximum fluorescence contrast of 151 when subjected to a drive voltage of 0.75 V vs the Ag/AgCl electrode, causing the fluorescence to be quenched, which resulted in the EFC process's "fluorescence off" state. The switching times for the fluorescence on and off states were 0.51 and 7.79 s, respectively. Over the same voltage range, the COF film also displayed EC properties, achieving a contrast of 50.23% and a coloration efficiency of 297.4 cm2 C-1 at 532 nm, with switching times of 18.6 s for coloration and 0.7 s for bleaching. Notably, the quenched fluorescence of the COF film could be restored by adding dopamine as a reductant. This phenomenon enabled the implementation of a NAND logic gate using the applied potential as a physical input and dopamine addition as a chemical input. This study demonstrates the successful development of COF films with bifunctional EFC and EC properties, showcasing their potential for use in constructing advanced optoelectronic devices.

3.
Nat Commun ; 15(1): 4402, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782924

ABSTRACT

Endowing the widely-used synthetic polymer nylon with high-performance organic room-temperature phosphorescence would produce advanced materials with a great potential for applications in daily life and industry. One key to achieving this goal is to find a suitable organic luminophore that can access the triplet excited state with the aid of the nylon matrix by controlling the matrix-luminophore interaction. Herein we report highly-efficient room-temperature phosphorescence nylons by doping cyano-substituted benzimidazole derivatives into the nylon 6 matrix. These homogeneously doped materials show ultralong phosphorescence lifetimes of up to 1.5 s and high phosphorescence quantum efficiency of up to 48.3% at the same time. The synergistic effect of the homogeneous dopant distribution via hydrogen bonding interaction, the rigid environment of the matrix polymer, and the potential energy transfer between doped luminophores and nylon is important for achieving the high-performance room-temperature phosphorescence, as supported by combined experimental and theoretical results with control compounds and various polymeric matrices. One-dimensional optical fibers are prepared from these doped room-temperature phosphorescence nylons that can transport both blue fluorescent and green afterglow photonic signals across the millimeter distance without significant optical attenuation. The potential applications of these phosphorescent materials in dual information encryption and rewritable recording are illustrated.

4.
Langmuir ; 40(12): 6244-6252, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38482812

ABSTRACT

A dye-sensitized photoanode is prepared by coassembling a Ru complex photosensitizer and a Ru water oxidation catalyst (WOC) on a TiO2 substrate, in which the WOC molecules are immobilized in a layer-by-layer fashion through metal-pyridine coordination with the aid of a bifunctional anchoring and bridging molecule containing multiple pyridine groups. Under visible-light irradiation, an anodic photocurrent of around 200 µA/cm2 has been achieved with O2 and H2 being generated at the photoanode and Pt counter electrode, respectively. The pyridine anchoring strategy provides a simple method to prepare photoelectrodes for applications in photoelectrochemical cells.

5.
Materials (Basel) ; 16(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37895773

ABSTRACT

Three monoruthenium complexes 1(PF6)2-3(PF6)2 bearing an N(CH3)-bridged ligand have been synthesized and characterized. These complexes have a general formula of [Ru(bpy)2(L)](PF6)2, where L is a 2,5-di(N-methyl-N'-(pyrid-2-yl)amino)pyrazine (dapz) derivative with various substituents, and bpy is 2,2'-bipyridine. The photophysical and electrochemical properties of these compounds have been examined. The solid-state structure of complex 3(PF6)2 is studied by single-crystal X-ray analysis. These complexes show two well-separated emission bands centered at 451 and 646 nm (Δλmax = 195 nm) for 1(PF6)2, 465 and 627 nm (Δλmax = 162 nm) for 2(PF6)2, and 455 and 608 nm (Δλmax = 153 nm) for 3(PF6)2 in dilute acetonitrile solution, respectively. The emission maxima of the higher-energy emission bands of these complexes are similar, while the lower-energy emission bands are dependent on the electronic nature of substituents. These complexes display two consecutive redox couples owing to the stepwise oxidation of the N(CH3)-bridged ligand and ruthenium component. Moreover, these experimental observations are analyzed by computational investigation.

6.
Chemistry ; 29(72): e202302663, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37782056

ABSTRACT

The development of efficient photocathodes is of critical importance for the constructions of promising tandem photo-electrochemical cells. Most known dye-sensitized photocathodes are prepared with the conventional carboxylic or phosphonic acid anchors and require the presence of other terminal linking groups to connect catalysts; they suffer from high synthetic difficulty and low adsorption stability in aqueous media. Here, a compact bilayer photocathode has been prepared by using a pyrene-based photosensitizer with multiple terminal pyridine moieties as both the anchoring and linking groups to connect a Co hydrogen-evolution catalyst to the NiO substrate. The catalyst and dye molecule are assembled in a layer-by-layer manner on NiO through the metal-pyridine coordination. This photocathode exhibits good dye adsorption stability in aqueous media. A stable cathodic photocurrent of 70 µA cm-2 was achieved, with H2 being generated at the photocathode under the visible-light irradiation. The Faraday efficiency of H2 evolution was estimated to be 9.1 %. Transient absorption spectral studies suggest that the interfacial hole transfer occurs within a few picoseconds. The integration of the organic photosensitizer with pyridine anchoring and linking groups is expected to provide a simple method for the fabrication of stable and efficient photocathodes.

7.
Chem Commun (Camb) ; 59(40): 6072-6075, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37114732

ABSTRACT

TiO2 photoelectrodes modified with organic dyes with pyridine anchoring groups are prepared, which are used as photoanodes of dye-sensitized photoelectrochemical cells for efficient water reduction with high photocurrent density and stability in aqueous solutions. Vigorous H2 generation with a production rate of around 250 µmol h-1 is realized with a photoanode of an active area of 5 × 5 cm2.

8.
Angew Chem Int Ed Engl ; 62(20): e202302160, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36929027

ABSTRACT

The development of circularly polarized electroluminescence (CPEL) is currently hampered by the high difficulty and cost in the syntheses of suitable chiral materials and the notorious chirality diminishment issue in electrical devices. Herein, diastereomeric IrIII and RuII complexes with chiral (±)-camphorsulfonate counteranions are readily synthesized and used as the active materials in circularly polarized light-emitting electrochemical cells to generate promising CPELs. The addition of the chiral ionic liquid (±)-1-butyl-3-methylimidazole camphorsulfonate into the active layer significantly improves the device performance and the electroluminescence dissymmetry factors (≈10-3 ), in stark contrast to the very weak circularly polarized photoluminescence of the spin-coated films of these diastereomeric complexes. Control experiments with enantiopure IrIII complexes suggest that the chiral anions play a dominant role in the electrically-induced amplification of CPELs.

9.
Chem Sci ; 13(46): 13907-13913, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36544745

ABSTRACT

Singlet fission (SF) has drawn tremendous attention as a multiexciton generation process that could mitigate the thermal loss and boost the efficiency of solar energy conversion. Although a SF-based solar cell with an EQE above 100% has already been fabricated successfully, the practical efficiency of the corresponding devices is plagued by the limited scope of SF materials. Therefore, it is of great importance to design and develop new SF-capable compounds aiming at practical device application. In the current contribution, via a π-expanded strategy, we presented a new series of robust SF chromophores based on polycyclic DPP derivatives, Ex-DPPs. Compared to conventional DPP molecules, Ex-DPPs feature strong absorption with a fivefold extinction coefficient, good molecular rigidity to effectively restrain non-radiative deactivation, and an expanded π-skeleton which endow them with well-suited intermolecular packing geometries for achieving efficient SF process. These results not only provide a new type of high-efficiency SF chromophore but also address some basic guidelines for the design of potential SF materials targeting practical light harvesting applications.

10.
Angew Chem Int Ed Engl ; 61(33): e202205033, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35604407

ABSTRACT

Nano- and micromaterials with anisotropic photoluminescence and photon transport have widespread application prospects in quantum optics, optoelectronics, and displays. But the nature of the polarization information of the out-coupled light, with respect to that of the source luminescence, has never been explored in active optical-waveguiding organic crystals. Herein, three different modes (selective, anisotropic, and consistent) of polarized-photon out-coupling are proposed and successfully implemented in a set of 2D organic microcrystals with highly linearly-polarized luminescence. It is found that the polarization direction and degree of the luminescence out-coupled through different waveguiding channels can either be essentially retained or distinctly changed with respect to those of the original luminescence, depending on the molecular arrangement and the orientation of transition dipole moments of the crystal. This work demonstrates the promising potential of 2D emissive microcrystals in multi-channel polarized photon transport.

11.
J Phys Chem B ; 125(48): 13279-13290, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34814686

ABSTRACT

The photoinduced intramolecular charge separation (CS) and charge recombination (CR) phenomena in a series of donor-bridge-acceptor (D-B-A) molecules are intensively investigated as a means of understanding electron transport through the π-B. Pyrene (Pyr) and triarylamine (TAA) moieties connected via phenylene Bs of various lengths are studied because their CS and CR behaviors can be readily monitored in real time by femtosecond transient absorption (fs-TA) spectroscopy. By combining the steady-state and fs-TA spectroscopic measurements in a variety of solvents together with chemical calculations, the parameters that govern the CS behaviors of these dyads were obtained, such as the solvent effects on free energy and the B-length-dependent electronic coupling (VDA) between D and A. We observed the sharp switch of the CS behavior with the increase of the solvent polarity and B-linker lengths. Furthermore, in the case of the shortest distance between D and A when the electron coupling is sufficiently large, we observed that the CS phenomenon occurs even in low-polar solvents. Upon increasing the length of B, CS occurs only in strong polar solvents. The distance-dependent decay constant of the CS rate is determined as ∼0.53 Å-1, indicating that CS is governed by superexchange tunneling interactions. The CS rate constants are also approximately estimated using Marcus electron transfer theory, and the results imply that the VDA value is the key factor dominating the CS rate, while the facile rotation of the phenylene B is important for modulating the lifetime of the charge-separated state in these D-B-A dyads. These results shed light on the practical strategy for obtaining a high CS efficiency with a long-lived CS state in TAA-B-Pyr derivatives.

12.
Inorg Chem ; 60(19): 14810-14819, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34546744

ABSTRACT

Three tris-heteroleptic mononuclear Ru(II) complexes with dual fluorescence and phosphorescence-[Ru(dpma)(bpy)(phen)]2+ (12+), [Ru(dpma)(bpy)(dppz)]2+ (22+), and [Ru(dpma)(phen)(dppz)]2+ (32+)-have been designed and used as ratiometric light-response probes for DNA, where dpma is di(pyrid-2-yl)(methyl)-amine, bpy is 2,2'-bipyridine, phen is 1,10-phenanthroline, and dppz is dipyridophenazine, respectively. Single crystals of complex 2(PF6)2 have been obtained and studied by X-ray analysis. The interactions of these complexes with different DNAs are investigated by means of spectroscopic methods, viscosity measurements, and molecular modeling. In the presence of calf thymus DNA, complexes 2(PF6)2 and 3(PF6)2 show the emergence of a new lower-energy phosphorescence emission band; meanwhile, the higher-energy fluorescence emission band is essentially unchanged, functioning as an intrinsic internal reference. These two complexes exhibit stronger preference for calf thymus DNA over single-strand DNA (d(A)16 and d(C)16). In contrast, no binding interaction between 1(PF6)2 and calf thymus DNA is observed. The intrinsic binding constants (Kb) of 2(PF6)2 and 3(PF6)2 with calf thymus DNA are determined to be (1.4 ± 0.4) × 105 and (9.5 ± 0.15) × 104 M-1, respectively. In addition, these spectroscopic results are compared with those of the prototype complex [Ru(bpy)2(dppz)]2+ (42+), and density functional theory and time-dependent density functional theory calculations are employed to elucidate these experimental findings.


Subject(s)
Coordination Complexes/chemistry , DNA/chemistry , Ruthenium/chemistry , Animals , Cattle , Molecular Structure
13.
Angew Chem Int Ed Engl ; 60(30): 16388-16393, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34018292

ABSTRACT

Inorganic cesium lead halide perovskites offer a pathway towards thermally stable photovoltaics. However, moisture-induced phase degradation restricts the application of hole transport layers (HTLs) with hygroscopic dopants. Dopant-free HTLs fail to realize efficient photovoltaics due to severe electrical loss. Herein, we developed an electrical loss management strategy by manipulating poly(3-hexylthiophene) with a small molecule, i.e., SMe-TATPyr. The developed P3HT/SMe-TATPyr HTL shows a three-time increase of carrier mobility owing to breaking the long-range ordering of "edge-on" P3HT and inducing the formation of "face-on" clusters, over 50 % decrease of the perovskite surface defect density, and a reduced voltage loss at the perovskite/HTL interface because of favorable energy level alignment. The CsPbI2 Br perovskite solar cell demonstrates a record-high efficiency of 16.93 % for dopant-free HTL, and superior moisture and thermal stability by maintaining 96 % efficiency at low-humidity condition (10-25 % R. H.) for 1500 hours and over 95 % efficiency after annealing at 85 °C for 1000 hours.

14.
Angew Chem Int Ed Engl ; 60(26): 14595-14600, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33822449

ABSTRACT

A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor glum , high fluorescence quantum efficiency (ΦFL ), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((±)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with glum in the order of 10-2 and ΦFL up to 80 %. Moreover, organic microcrystals with high-performance white CPL (ΦFL =46 %; |glum |=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters.

15.
Dalton Trans ; 50(12): 4219-4230, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33687405

ABSTRACT

Three cyclometalated diruthenium complexes bridged by 3,3',5,5'-tetrakis(benzimidazol-2-yl)biphenyl (H-tbibp) and capped with different terminal ligands have been synthesized and examined. In addition, two monoruthenium complexes with H-tbibp have been prepared for the purpose of comparison studies. The degree of Ru-Ru electronic coupling of these diruthenium complexes has been investigated by electrochemical and intervalence charge-transfer (IVCT) analyses. These results suggest that when the same or similar terminal ligands are used, the strength of H-tbibp in mediating the Ru-Ru coupling is enhanced with respect to that of the previously reported bridging ligand 3,3',5,5'-tetrakis(N-methylbenzimidazol-2-yl)biphenyl, but it is slightly inferior to that of the classical bridging ligand 3,3',5,5'-tetrakis(pyrid-2-yl)biphenyl. This trend is also supported by CNS analyses based on the hole-superexchange mechanism. In addition, DFT calculations have been performed to probe the spin density distributions of the singly-oxidized diruthenium complexes with H-tbibp and TDDFT calculations are used to reproduce the IVCT transitions.

16.
Inorg Chem ; 59(16): 11316-11328, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32799462

ABSTRACT

Molecular packing has an important effect on the photophysical properties of crystalline materials. We demonstrate in this work the modulation of molecular packing and emission properties of microcrystals by minor molecular structural variations. Four platinum ß-diketonate complexes, with two fluoro substituents (1) or one fluoro atom substituted on different positions of the auxiliary phenylpyridine ligand (2-4) have been synthesized. These complexes were used to prepare one-dimensional microcrystals with well-defined shapes and uniform sizes. Although 1-4 display similar emission spectra in the solution state, the corresponding microcrystals display different emission colors from green to yellow and orange. In addition, different temperature-responsive (80-298 K) emission spectral changes have been observed from these microcrystals, including the intensity variation of the locally excited (LE) emission without obvious wavelength shifts, competition between the LE and metal-metal-to-ligand charge-transfer emissions, and the sole wavelength shift of the π-π excimer emissions. These differences in emission properties are rationalized by different molecular packings of these materials, as revealed by single-crystal X-ray analyses.

17.
Chem Commun (Camb) ; 56(14): 2087-2090, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-31967623

ABSTRACT

A dual-emissive tris-heteroleptic ruthenium complex is designed, synthesized and applied for the ratiometric photoluminescent detection of amyloid-ß (Aß) aggregation in both steady and transient states. The Aß aggregation is supported by transmission electron microscopy and confocal laser scanning microscopy analysis. In addition, molecular docking calculations have been performed to gain insights into the interaction mode between the ruthenium complex and Aß fibrils.


Subject(s)
Amyloid beta-Peptides/analysis , Coordination Complexes/chemistry , Ruthenium/chemistry , Coordination Complexes/chemical synthesis , Humans , Molecular Docking Simulation , Molecular Structure , Protein Aggregates
18.
Chem Commun (Camb) ; 55(89): 13406-13409, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31637391

ABSTRACT

A new small molecular hole-transporting material, 1,3,6,8-tetrakis[N-(p-methoxyphenyl)-N'-(9,9'-dimethyl-9H-fluoren-2-yl)-amino]pyrene (TFAP) was synthesized and applied in CH3NH3PbI3-perovskite solar cells. A best power conversion efficiency of 19.7% with a photovoltage of 1.11 V has been achieved.

19.
Polymers (Basel) ; 11(1)2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30960057

ABSTRACT

Two star-shaped multi-triphenylamine derivatives 1 and 2 were prepared, where 2 has an additional phenyl unit between a pyrene core and surrounding triphenylamine units. The oxidative electropolymerization of 1 and 2 occurred smoothly to give thin films of polymers P1 and P2. The electrochemistry and spectroelectrochemistry of P1 and P2 were examined, showing two-step absorption spectral changes in the near-infrared region. The electrochromic properties, including contrast ratio, response time, and cyclic stability of P1 and P2 were investigated and compared. Thin film of P2 displays slightly better electrochromic performance than P1, with a contrast ratio of 45% at 1475 nm being achieved.

20.
Inorg Chem ; 58(5): 3509-3517, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30758195

ABSTRACT

A cyclometalated ruthenium sensitizer 3 containing a triphenylamine unit was synthesized and immobilized on a nanocrystalline TiO2 surface. By using oxidative electrochemical deposition, a covalent layer of a related cyclometalated ruthenium complex 2 was coupled to the top of dye 3. Electrochemical studies suggested that complex 2 was immobilized on the TiO2/3 film surface by a tetraphenylbenzidine linker to form a dimer-like structure. The immobilization of 3 and 2 was further supported by absorption spectral analysis. The resulting electrodeposited TiO2/(3+2) film displays significantly enhanced sensitizer stabilization toward basic aqueous NaOH solution with respect to the original TiO2/3 film. The dye-sensitized solar cells with the TiO2/(3+2) photoanode display a power conversion efficiency of 4.4%, which is slightly inferior to that with the TiO2/3 film (5.1%) under the same measurement conditions.

SELECTION OF CITATIONS
SEARCH DETAIL