Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
1.
Nat Commun ; 15(1): 6140, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033132

ABSTRACT

Conventional wireless communication schemes indiscriminately transmit information into the whole space and pose inherent security risks. Recently, directional information modulation (DIM) has attracted enormous attention as a promising technology. DIM generates correct constellation symbols in the desired directions and distorts them in undesired directions, thus ensuring the security of the transmitted information. Although several DIM schemes have been reported, they suffer from defects of bulkiness, energy consumption, high cost, and inability to support two-dimensional (2D) and high-order modulations. Here, we propose a DIM scheme based on a 2-bit programmable metasurface (PM) that overcomes these defects. A fast and efficient discrete optimization algorithm is developed to optimize the digital coding sequences, and the correct constellation symbols can be generated and transmitted in multi-directional beams. As a proof-of-concept, three sets of constellation diagrams (8 phase shift keying (PSK), 16 quadrature amplitude modulation (QAM), and 64QAM) are realized in the multi-channel modes. This work provides an important route of employing DIM for ensuring physical-layer security and serves as a stepping stone toward endogenous secure communications.

2.
bioRxiv ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39005433

ABSTRACT

Memantine is an US Food and Drug Administration (FDA) approved drug that selectively inhibits NMDA-subtype ionotropic glutamate receptors (NMDARs) for treatment of dementia and Alzheimer's. NMDARs enable calcium influx into neurons and are critical for normal brain function. However, increasing evidence shows that calcium influx in neurological diseases is augmented by calcium-permeable AMPA-subtype ionotropic glutamate receptors (AMPARs). Here, we demonstrate that these calcium-permeable AMPARs (CP-AMPARs) are inhibited by memantine. Electrophysiology unveils that memantine inhibition of CP-AMPARs is dependent on their calcium permeability and the presence of their neuronal auxiliary subunit transmembrane AMPAR regulatory proteins (TARPs). Through cryo-electron microscopy we elucidate that memantine blocks CP-AMPAR ion channels in a unique mechanism of action from NMDARs. Furthermore, we demonstrate that memantine reverses a gain of function AMPAR mutation found in a patient with a neurodevelopmental disorder and inhibits CP-AMPARs in nerve injury. Our findings alter the paradigm for the memantine mechanism of action and provide a blueprint for therapeutic approaches targeting CP-AMPARs.

3.
Talanta ; 278: 126464, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38936106

ABSTRACT

Deoxynivalenol (DON), a mycotoxin produced by Fusarium, poses a significant risk to human health and the environment. Therefore, the development of a highly sensitive and accurate detection method is essential to monitor the pollution situation. In response to this imperative, we have devised an advanced split-type photoelectrochemical (PEC) sensor for DON analysis, which leverages self-shedding MOF-nanocarriers to modulate the photoelectric response ability of PEC substrate. The PEC sensing interface was constructed using CdS/MoSe2 heterostructures, while the self-shedding copper peroxide nanodots@ZIF-8 (CPNs@ZIF-8) served as the Cu2+ source for the in-situ ion exchange reaction, which generated a target-related signal reduction. The constructed PEC sensor exhibited a broad linear range of 0.1 pg mL-1 to 500 ng mL-1 with a low detection limit of 0.038 pg mL-1, demonstrating high stability, selectivity, and proactivity. This work not only introduces innovative ideas for the design of photosensitive materials, but also presents novel sensing strategies for detecting various environmental pollutants.

4.
J Neurosci ; 44(29)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38886057

ABSTRACT

Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506), are commonly used immunosuppressants for preserving transplanted organs and tissues. However, these drugs can cause severe and persistent pain. GluA2-lacking, calcium-permeable AMPA receptors (CP-AMPARs) are implicated in various neurological disorders, including neuropathic pain. It is unclear whether and how constitutive calcineurin, a Ca2+/calmodulin protein phosphatase, controls synaptic CP-AMPARs. In this study, we found that blocking CP-AMPARs with IEM-1460 markedly reduced the amplitude of AMPAR-EPSCs in excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2), but not in inhibitory neurons expressing vesicular GABA transporter, in the spinal cord of FK506-treated male and female mice. FK506 treatment also caused an inward rectification in the current-voltage relationship of AMPAR-EPSCs specifically in VGluT2 neurons. Intrathecal injection of IEM-1460 rapidly alleviated pain hypersensitivity in FK506-treated mice. Furthermore, FK506 treatment substantially increased physical interaction of α2δ-1 with GluA1 and GluA2 in the spinal cord and reduced GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of spinal cords. Correspondingly, inhibiting α2δ-1 with pregabalin, Cacna2d1 genetic knock-out, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide reversed inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons caused by FK506 treatment. In addition, CK2 inhibition reversed FK506 treatment-induced pain hypersensitivity, α2δ-1 interactions with GluA1 and GluA2, and inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons. Thus, the increased prevalence of synaptic CP-AMPARs in spinal excitatory neurons plays a major role in calcineurin inhibitor-induced pain hypersensitivity. Calcineurin and CK2 antagonistically regulate postsynaptic CP-AMPARs through α2δ-1-mediated GluA1/GluA2 heteromeric assembly in the spinal dorsal horn.


Subject(s)
Calcineurin , Casein Kinase II , Receptors, AMPA , Spinal Cord , Tacrolimus , Animals , Receptors, AMPA/metabolism , Mice , Calcineurin/metabolism , Male , Female , Tacrolimus/pharmacology , Spinal Cord/metabolism , Spinal Cord/drug effects , Casein Kinase II/metabolism , Neurons/metabolism , Neurons/drug effects , Mice, Inbred C57BL , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Synapses/drug effects , Synapses/metabolism , Synapses/physiology , Calcineurin Inhibitors/pharmacology , Phenotype , Calcium Channels
5.
Crit Rev Oncol Hematol ; 200: 104402, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848881

ABSTRACT

BACKGROUND: The use of adaptive designs in cancer trials has considerably increased worldwide in recent years, along with the release of various guidelines for their application. This systematic review aims to comprehensively summarize the key methodological and executive features of adaptive designs in cancer clinical trials. METHODS: A comprehensive search from PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials was conducted to screen eligible clinical trials that employed adaptive designs and were conducted in cancer patients. The methodological and executive characteristics of adaptive designs were the main measurements extracted. Descriptive analyses, primarily consisting of frequency and percentage, were employed to analyzed and reported the data. RESULTS: A total of 180 cancer clinical trials with adaptive designs were identified. The first three most common type of adaptive design was the group sequential design (n=114, 63.3 %), adaptive dose-finding design (n=22, 12.2 %), and adaptive platform design (n=16, 8.9 %). The results showed that 4.4 % (n=8) of trials conducted post hoc modifications, and around 29.4 % (n=53) did not provide the methods for controlling type I errors. Among phase II or above trials, 79.9 % (112/140) applied the surrogate endpoint as the primary outcome in these trials. Importantly, 27.2 % (49/180) of trials did not report clear information on the independent data monitoring committee (iDMC), and 13.3 % (n=24) without clear information on interim analyses. Interim analyses suggested 34.4 % (62/180) of trials being stopped for futility, 10.6 % (n=19) for efficacy, and 2.2 % (n=4) for safety concerns in the early stage. CONCLUSIONS: This study emphasizes adaptive designs in cancer trials face significant challenges in their design or strict implementation according to protocol, which might significantly compromise the validity and integrity of trials. It is thus important for researchers, sponsors, and policymakers to actively oversee and guide their application.


Subject(s)
Clinical Trials as Topic , Neoplasms , Research Design , Humans , Neoplasms/therapy , Neoplasms/drug therapy
6.
Nutrients ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732518

ABSTRACT

Vitamin D3 (VD3) is a steroid hormone that plays pivotal roles in pathophysiology, and 1,25(OH)2D3 is the most active form of VD3. In the current study, the crucial role of VD3 in maintaining energy homeostasis under short-term fasting conditions was investigated. Our results confirmed that glucose-depriving pathways were inhibited while glucose-producing pathways were strengthened in zebrafish after fasting for 24 or 48 h. Moreover, VD3 anabolism in zebrafish was significantly suppressed in a time-dependent manner under short-fasting conditions. After fasting for 24 or 48 h, zebrafish fed with VD3 displayed a higher gluconeogenesis level and lower glycolysis level in the liver, and the serum glucose was maintained at higher levels, compared to those fed without VD3. Additionally, VD3 augmented the expression of fatty acids (FAs) transporter cd36 and lipogenesis in the liver, while enhancing lipolysis in the dorsal muscle. Similar results were obtained in cyp2r1-/- zebrafish, in which VD3 metabolism is obstructed. Importantly, it was observed that VD3 induced the production of gut GLP-1, which is considered to possess a potent gluconeogenic function in zebrafish. Meanwhile, the gene expression of proprotein convertase subtilisin/kexin type 1 (pcsk1), a GLP-1 processing enzyme, was also induced in the intestine of short-term fasted zebrafish. Notably, gut microbiota and its metabolite acetate were involved in VD3-regulated pcsk1 expression and GLP-1 production under short-term fasting conditions. In summary, our study demonstrated that VD3 regulated GLP-1 production in zebrafish by influencing gut microbiota and its metabolite, contributing to energy homeostasis and ameliorating hypoglycemia under short-term fasting conditions.


Subject(s)
Cholecalciferol , Energy Metabolism , Fasting , Homeostasis , Zebrafish , Animals , Cholecalciferol/metabolism , Cholecalciferol/pharmacology , Liver/metabolism , Gluconeogenesis , Gastrointestinal Microbiome/physiology , Blood Glucose/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/blood
7.
J Physiol ; 602(10): 2179-2197, 2024 May.
Article in English | MEDLINE | ID: mdl-38630836

ABSTRACT

Hypertension is a major adverse effect of calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, used clinically as immunosuppressants. Calcineurin inhibitor-induced hypertension (CIH) is linked to augmented sympathetic output from the hypothalamic paraventricular nucleus (PVN). GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) are a key feature of glutamatergic synaptic plasticity, yet their role in CIH remains elusive. Here, we found that systemic administration of FK506 in rats significantly increased serine phosphorylation of GluA1 and GluA2 in PVN synaptosomes. Strikingly, FK506 treatment reduced GluA1/GluA2 heteromers in both synaptosomes and endoplasmic reticulum-enriched fractions from the PVN. Blocking CP-AMPARs with IEM-1460 induced a larger reduction of AMPAR-mediated excitatory postsynaptic current (AMPAR-EPSC) amplitudes in retrogradely labelled, spinally projecting PVN neurons in FK506-treated rats than in vehicle-treated rats. Furthermore, FK506 treatment shifted the current-voltage relationship of AMPAR-EPSCs from linear to inward rectification in labelled PVN neurons. FK506 treatment profoundly enhanced physical interactions of α2δ-1 with GluA1 and GluA2 in the PVN. Inhibiting α2δ-1 with gabapentin, α2δ-1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide restored GluA1/GluA2 heteromers in the PVN and diminished inward rectification of AMPAR-EPSCs in labelled PVN neurons induced by FK506 treatment. Additionally, microinjection of IEM-1460 or α2δ-1 C terminus peptide into the PVN reduced renal sympathetic nerve discharges and arterial blood pressure elevated in FK506-treated rats but not in vehicle-treated rats. Thus, calcineurin in the hypothalamus constitutively regulates AMPAR subunit composition and phenotypes by controlling GluA1/GluA2 interactions with α2δ-1. Synaptic CP-AMPARs in PVN presympathetic neurons contribute to augmented sympathetic outflow in CIH. KEY POINTS: Systemic treatment with the calcineurin inhibitor increases serine phosphorylation of synaptic GluA1 and GluA2 in the PVN. Calcineurin inhibition enhances the prevalence of postsynaptic Ca2+-permeable AMPARs in PVN presympathetic neurons. Calcineurin inhibition potentiates α2δ-1 interactions with GluA1 and GluA2, disrupting intracellular assembly of GluA1/GluA2 heterotetramers in the PVN. Blocking Ca2+-permeable AMPARs or α2δ-1-AMPAR interactions in the PVN attenuates sympathetic outflow augmented by the calcineurin inhibitor.


Subject(s)
Calcineurin , Neurons , Paraventricular Hypothalamic Nucleus , Rats, Sprague-Dawley , Receptors, AMPA , Tacrolimus , Animals , Receptors, AMPA/metabolism , Receptors, AMPA/physiology , Calcineurin/metabolism , Male , Tacrolimus/pharmacology , Rats , Neurons/physiology , Neurons/drug effects , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Calcium/metabolism , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/drug effects , Calcineurin Inhibitors/pharmacology , Synapses/physiology , Synapses/drug effects , Synapses/metabolism
8.
Eur J Med Res ; 29(1): 156, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448999

ABSTRACT

BACKGROUND: This study aimed to develop and validate an interpretable machine-learning model that utilizes clinical features and inflammatory biomarkers to predict the risk of in-hospital mortality in critically ill patients suffering from sepsis. METHODS: We enrolled all patients diagnosed with sepsis in the Medical Information Mart for Intensive Care IV (MIMIC-IV, v.2.0), eICU Collaborative Research Care (eICU-CRD 2.0), and the Amsterdam University Medical Centers databases (AmsterdamUMCdb 1.0.2). LASSO regression was employed for feature selection. Seven machine-learning methods were applied to develop prognostic models. The optimal model was chosen based on its accuracy, F1 score and area under curve (AUC) in the validation cohort. Moreover, we utilized the SHapley Additive exPlanations (SHAP) method to elucidate the effects of the features attributed to the model and analyze how individual features affect the model's output. Finally, Spearman correlation analysis examined the associations among continuous predictor variables. Restricted cubic splines (RCS) explored potential non-linear relationships between continuous risk factors and in-hospital mortality. RESULTS: 3535 patients with sepsis were eligible for participation in this study. The median age of the participants was 66 years (IQR, 55-77 years), and 56% were male. After selection, 12 of the 45 clinical parameters collected on the first day after ICU admission remained associated with prognosis and were used to develop machine-learning models. Among seven constructed models, the eXtreme Gradient Boosting (XGBoost) model achieved the best performance, with an AUC of 0.94 and an F1 score of 0.937 in the validation cohort. Feature importance analysis revealed that Age, AST, invasive ventilation treatment, and serum urea nitrogen (BUN) were the top four features of the XGBoost model with the most significant impact. Inflammatory biomarkers may have prognostic value. Furthermore, SHAP force analysis illustrated how the constructed model visualized the prediction of the model. CONCLUSIONS: This study demonstrated the potential of machine-learning approaches for early prediction of outcomes in patients with sepsis. The SHAP method could improve the interoperability of machine-learning models and help clinicians better understand the reasoning behind the outcome.


Subject(s)
Sepsis , Humans , Male , Middle Aged , Aged , Female , Hospital Mortality , Biomarkers , Area Under Curve , Machine Learning
9.
Am J Physiol Endocrinol Metab ; 326(4): E482-E492, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38324257

ABSTRACT

Vitamin D (VD) is a fat-soluble sterol that possesses a wide range of physiological functions. The present study aimed to evaluate the effects of VD on folate metabolism in zebrafish and further investigated the underlying mechanism. Wild-type (WT) zebrafish were fed with a diet containing 0 IU/kg VD3 or 800 IU/kg VD3 for 3 wk. Meanwhile, cyp2r1 mutant zebrafish with impaired VD metabolism was used as another model of VD deficiency. Our results showed that VD deficiency in zebrafish suppressed the gene expression of folate transporters, including reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) in the intestine. Moreover, VD influenced the gene expression of several enzymes related to cellular folate metabolism in the intestine and liver of zebrafish. Importantly, VD-deficient zebrafish contained a remarkably lower level of folate content in the liver. Notably, VD was incapable of altering folate metabolism in zebrafish when gut microbiota was depleted by antibiotic treatment. Further studies proved that gut commensals from VD-deficient fish displayed a lower capacity to produce folate than those from WT fish. Our study revealed the potential correlation between VD and folate metabolism in zebrafish, and gut microbiota played a key role in VD-regulated folate metabolism in zebrafish.NEW & NOTEWORTHY Our study has identified that VD influences intestinal uptake and transport of folate in zebrafish while also altering hepatic folate metabolism and storage. Interestingly, the regulatory effects of VD on folate transport and metabolism diminished after the gut flora was interrupted by antibiotic treatment, suggesting that the regulatory effects of VD on folate metabolism in zebrafish are most likely dependent on the intestinal flora.


Subject(s)
Vitamin D Deficiency , Vitamin D , Animals , Zebrafish , Folic Acid/pharmacology , Folic Acid/metabolism , Vitamins , Reduced Folate Carrier Protein/genetics , Reduced Folate Carrier Protein/metabolism , Anti-Bacterial Agents
10.
IEEE Trans Pattern Anal Mach Intell ; 46(8): 5556-5574, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38376967

ABSTRACT

Misinformation has become a pressing issue. Fake media, in both visual and textual forms, is widespread on the web. While various DeepFake detection and text fake news detection methods have been proposed, they are only designed for single-modality forgery based on binary classification, let alone analyzing and reasoning subtle forgery traces across different modalities. In this paper, we highlight a new research problem for multi-modal fake media, namely Detecting and Grounding Multi-Modal Media Manipulation (DGM 4). DGM 4 aims to not only detect the authenticity of multi-modal media, but also ground the manipulated content (i.e., image bounding boxes and text tokens), which requires deeper reasoning of multi-modal media manipulation. To support a large-scale investigation, we construct the first DGM 4 dataset, where image-text pairs are manipulated by various approaches, with rich annotation of diverse manipulations. Moreover, we propose a novel HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER) to fully capture the fine-grained interaction between different modalities. HAMMER performs: 1) manipulation-aware contrastive learning between two uni-modal encoders as shallow manipulation reasoning and 2) modality-aware cross-attention by multi-modal aggregator as deep manipulation reasoning. Dedicated manipulation detection and grounding heads are integrated from shallow to deep levels based on the interacted multi-modal information. To exploit more fine-grained contrastive learning for cross-modal semantic alignment, we further integrate Manipulation-Aware Contrastive Loss with Local View and construct a more advanced model HAMMER++. Finally, we build an extensive benchmark and set up rigorous evaluation metrics for this new research problem. Comprehensive experiments demonstrate the superiority of HAMMER and HAMMER++; several valuable observations are also revealed to facilitate future research in multi-modal media manipulation.

11.
Natl Sci Rev ; 11(3): nwad299, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38312383

ABSTRACT

A digital coding metasurface is a platform connecting the digital space and electromagnetic wave space, and has therefore gained much attention due to its intriguing value in reshaping wireless channels and realizing new communication architectures. Correspondingly, there is an urgent need for electromagnetic information theory that reveals the upper limit of communication capacity and supports the accurate design of metasurface-based communication systems. To this end, we propose a macroscopic model and a statistical model of the digital coding metasurface. The macroscopic model uniformly accommodates both digital and electromagnetic aspects of the meta-atoms and predicts all possible scattered fields of the digital coding metasurface based on a small number of simulations or measurements. Full-wave simulations and experimental results show that the macroscopic model is feasible and accurate. A statistical model is further proposed to correlate the mutual coupling between meta-atoms with covariance and to calculate the entropy of the equivalent currents of digital coding metasurface. These two models can help reconfigurable intelligent surfaces achieve more accurate beamforming and channel estimation, and thus improve signal power and coverage. Moreover, the models will encourage the creation of a precoding codebook in metasurface-based direct digital modulation systems, with the aim of approaching the upper limit of channel capacity. With these two models, the concepts of current space and current entropy, as well as the analysis of information loss from the coding space to wave space, is established for the first time, helping to bridge the gap between the digital world and the physical world, and advancing developments of electromagnetic information theory and new-architecture wireless systems.

12.
Comput Biol Med ; 170: 107916, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237237

ABSTRACT

In the medical field, the application of machine learning technology in the automatic diagnosis and monitoring of osteoporosis often faces challenges related to domain adaptation in drug therapy research. The existing neural networks used for the diagnosis of osteoporosis may experience a decrease in model performance when applied to new data domains due to changes in radiation dose and equipment. To address this issue, in this study, we propose a new method for multi domain diagnostic and quantitative computed tomography (QCT) images, called DeepmdQCT. This method adopts a domain invariant feature strategy and integrates a comprehensive attention mechanism to guide the fusion of global and local features, effectively improving the diagnostic performance of multi domain CT images. We conducted experimental evaluations on a self-created OQCT dataset, and the results showed that for dose domain images, the average accuracy reached 91%, while for device domain images, the accuracy reached 90.5%. our method successfully estimated bone density values, with a fit of 0.95 to the gold standard. Our method not only achieved high accuracy in CT images in the dose and equipment fields, but also successfully estimated key bone density values, which is crucial for evaluating the effectiveness of osteoporosis drug treatment. In addition, we validated the effectiveness of our architecture in feature extraction using three publicly available datasets. We also encourage the application of the DeepmdQCT method to a wider range of medical image analysis fields to improve the performance of multi-domain images.


Subject(s)
Osteoporosis , Humans , Osteoporosis/diagnostic imaging , Bone Density , Tomography, X-Ray Computed , Computers , Machine Learning , Image Processing, Computer-Assisted
13.
Cell Death Differ ; 31(1): 106-118, 2024 01.
Article in English | MEDLINE | ID: mdl-38012390

ABSTRACT

Osteoarthritis (OA) is one of the most common joint diseases, there are no effective disease-modifying drugs, and the pathological mechanisms of OA need further investigation. Here, we show that H3K36 methylations were decreased in senescent chondrocytes and age-related osteoarthritic cartilage. Prrx1-Cre inducible H3.3K36M transgenic mice showed articular cartilage destruction and osteophyte formation. Conditional knockout Nsd1Prrx1-Cre mice, but not Nsd2Prrx1-Cre or Setd2Prrx1-Cre mice, replicated the phenotype of K36M/+; Prrx1-Cre mice. Immunostaining results showed decreased anabolic and increased catabolic activities in Nsd1Prrx1-Cre mice, along with decreased chondrogenic differentiation. Transcriptome and ChIP-seq data revealed that Osr2 was a key factor affected by Nsd1. Intra-articular delivery of Osr2 adenovirus effectively improved the homeostasis of articular cartilage in Nsd1Prrx1-Cre mice. In human osteoarthritic cartilages, both mRNA and protein levels of NSD1 and OSR2 were decreased. Our results indicate that NSD1-induced H3K36 methylations and OSR2 expression play important roles in articular cartilage homeostasis and OA. Targeting H3K36 methylation and OSR2 would be a novel strategy for OA treatment.


Subject(s)
Cartilage, Articular , Osteoarthritis , Mice , Humans , Animals , Chondrocytes/metabolism , Methyltransferases/metabolism , Osteoarthritis/pathology , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Mice, Transgenic , Homeostasis , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism
14.
Gene ; 894: 147942, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37935322

ABSTRACT

BACKGROUND: Postmenopausal osteoporosis (PMOP) is related to the elevated risk of fracture in postmenopausal women. Thus, to effectively predict the occurrence of PMOP, we explored a novel gene signature for the prediction of PMOP risk. METHODS: The WGCNA analysis was conducted to identify the PMOP-related gene modules based on the data from GEO database (GSE56116 and GSE100609). The "limma" R package was applied for screening differentially expressed genes (DEGs) based on the data from GSE100609 dataset. Next, LASSO Cox algorithm were applied to identify valuable PMOP-related risk genes and construct a risk score model. GSEA was then conducted to analyze potential signaling pathways between high-risk (HR) score and low-risk (LR) score groups. RESULTS: A novel risk model with five PMOP-related risk genes (SCUBE3, TNNC1, SPON1, SEPT12 and ULBP1) was developed for predicting PMOP risk status. RT-qPCR and western blot assays validated that compared to postmenopausal non-osteoporosis (non-PMOP) patients, SCUBE3, ULBP1, SEPT12 levels were obviously elevated, and TNNC1 and SPON1 levels were reduced in blood samples from PMOP patients. Additionally, PMOP-related pathways such as MAPK signaling pathway, PI3K-Akt signaling pathway and HIF-1 signaling pathway were significantly activated in the HR-score group compared to the LR-score group. The circRNA-gene-miRNA and gene-transcription factor networks showed that 533 miRNAs, 13 circRNAs and 40 TFs might be involved in regulating the expression level of these five PMOP-related genes. CONCLUSION: Collectively, we developed a PMOP-related gene signature based on SCUBE3, TNNC1, SPON1, SEPT12 and ULBP1 genes, and higher risk score indicated higher risk suffering from PMOP.


Subject(s)
MicroRNAs , Osteoporosis, Postmenopausal , Humans , Female , Osteoporosis, Postmenopausal/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Gene Regulatory Networks , MicroRNAs/genetics , Signal Transduction/genetics , Calcium-Binding Proteins/genetics
15.
J Nutr Biochem ; 123: 109473, 2024 01.
Article in English | MEDLINE | ID: mdl-37844767

ABSTRACT

Vitamin D (VD) is a steroid hormone that is widely known to play an important role in maintaining mineral homeostasis, and regulating various physiological functions. Our previous results demonstrated that the interruption of VD metabolism caused hyperglycemia in zebrafish. In the present study we further explored the mechanism that VD regulates glucose metabolism by maintaining intestinal homeostasis in zebrafish. Our results showed that the expression of several peptide hormones including gastric inhibitory peptide, peptide YY, and fibroblast growth factor 19 in the intestine decreased, while the expression of sodium glucose cotransporter-1 and gcg was increased in the intestine of the zebrafish fed with the VD3-deficient diet. Consistently, similar results were obtained in cyp2r1-/- zebrafish, in which endogenous VD metabolism is blocked. Furthermore, the results obtained from germ-free zebrafish exhibited that VD-regulated glucose metabolism was partly dependent on the microbiota in zebrafish. Importantly, the transplantation of gut microbiota collected from cyp2r1-/- zebrafish to germ-free zebrafish led to hyperglycemic symptoms in the fish, which were associated with the altered structure and functions of the microbiota in cyp2r1-/- zebrafish. Interestingly, the treatments with acetate or Cetobacterium somerae, a potent acetate producer, lowered the glucose contents whereas augmented insulin expression in zebrafish larvae. Notably, acetate supplementation alleviated hyperglycemia in cyp2r1-/- zebrafish and other diabetic zebrafish. In conclusion, our study has demonstrated that VD modulates the gut microbiota-SCFAs-gastrointestinal hormone axis, contributing to the maintenance of glucose homeostasis.


Subject(s)
Hyperglycemia , Zebrafish , Animals , Zebrafish/metabolism , Vitamin D/metabolism , Intestines/microbiology , Glucose/metabolism , Vitamins/metabolism , Homeostasis , Acetates
16.
J Biol Chem ; 300(2): 105597, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160798

ABSTRACT

Increased expression of angiotensin II AT1A receptor (encoded by Agtr1a) and Na+-K+-Cl- cotransporter-1 (NKCC1, encoded by Slc12a2) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension development. However, little is known about their transcriptional control in the PVN in hypertension. DNA methylation is a critical epigenetic mechanism that regulates gene expression. Here, we determined whether transcriptional activation of Agtr1a and Slc12a2 results from altered DNA methylation in spontaneously hypertensive rats (SHR). Methylated DNA immunoprecipitation and bisulfite sequencing-PCR showed that CpG methylation at Agtr1a and Slc12a2 promoters in the PVN was progressively diminished in SHR compared with normotensive Wistar-Kyoto rats (WKY). Chromatin immunoprecipitation-quantitative PCR revealed that enrichment of DNA methyltransferases (DNMT1 and DNMT3A) and methyl-CpG binding protein 2, a DNA methylation reader protein, at Agtr1a and Slc12a2 promoters in the PVN was profoundly reduced in SHR compared with WKY. By contrast, the abundance of ten-eleven translocation enzymes (TET1-3) at Agtr1a and Slc12a2 promoters in the PVN was much greater in SHR than in WKY. Furthermore, microinjecting of RG108, a selective DNMT inhibitor, into the PVN of WKY increased arterial blood pressure and correspondingly potentiated Agtr1a and Slc12a2 mRNA levels in the PVN. Conversely, microinjection of C35, a specific TET inhibitor, into the PVN of SHR markedly reduced arterial blood pressure, accompanied by a decrease in Agtr1a and Slc12a2 mRNA levels in the PVN. Collectively, our findings suggest that DNA hypomethylation resulting from the DNMT/TET switch at gene promoters in the PVN promotes transcription of Agtr1a and Slc12a2 and hypertension development.


Subject(s)
DNA Demethylation , Hypothalamus , Receptor, Angiotensin, Type 1 , Solute Carrier Family 12, Member 2 , Animals , Rats , Blood Pressure , DNA/metabolism , Hypertension/metabolism , Hypothalamus/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Receptor, Angiotensin, Type 1/metabolism , RNA, Messenger/genetics , Sympathetic Nervous System/metabolism , Solute Carrier Family 12, Member 2/metabolism
17.
J Neurosci ; 44(4)2024 01 24.
Article in English | MEDLINE | ID: mdl-38124193

ABSTRACT

K+-Cl- cotransporter-2 (KCC2) critically controls neuronal chloride homeostasis and maintains normal synaptic inhibition by GABA and glycine. Nerve injury diminishes synaptic inhibition in the spinal cord via KCC2 impairment. However, how KCC2 regulates nociceptive input to spinal excitatory and inhibitory neurons remains elusive. Here, we show that basal GABA reversal potentials were significantly more depolarized in vesicular GABA transporter (VGAT)-expressing inhibitory neurons than those in vesicular glutamate transporter-2 (VGluT2)-expressing excitatory neurons in spinal cords of male and female mice. Strikingly, inhibiting KCC2 with VU0463271 increased currents elicited by puff NMDA and the NMDAR-mediated frequency of mEPSCs in VGluT2, but not in VGAT, dorsal horn neurons. Notably, VU0463271 had no effect on EPSCs monosynaptically evoked from the dorsal root in VGluT2 neurons. Furthermore, VU0463271 augmented α2δ-1-NMDAR interactions and their protein levels in spinal cord synaptosomes. In Cacna2d1 KO mice, VU0463271 had no effect on puff NMDA currents or the mEPSC frequency in dorsal horn neurons. Disrupting α2δ-1-NMDAR interactions with α2δ-1 C-terminus mimicking peptide diminished VU0463271-induced potentiation in the mEPSC frequency and puff NMDA currents in VGluT2 neurons. Additionally, intrathecal injection of VU0463271 reduced mechanical and thermal thresholds in wild-type mice, but not in Cacna2d1 KO mice. VU0463271-induced pain hypersensitivity in mice was abrogated by co-treatment with the NMDAR antagonist, pregabalin (an α2δ-1 inhibitory ligand), or α2δ-1 C-terminus mimicking peptide. Our findings suggest that KCC2 controls presynaptic and postsynaptic NMDAR activity specifically in excitatory dorsal horn neurons. KCC2 impairment preferentially potentiates nociceptive transmission between spinal excitatory interneurons via α2δ-1-bound NMDARs.Significance statementImpaired function of potassium-chloride cotransporter-2 (KCC2), a key regulator of neuronal inhibition, in the spinal cord plays a major role in neuropathic pain. This study unveils that KCC2 controls spinal nociceptive synaptic strength via NMDA receptors in a cell type- and synapse type-specific manner. KCC2 inhibition preferentially augments presynaptic and postsynaptic NMDA receptor activity in spinal excitatory interneurons via α2δ-1 (previously known as a calcium channel subunit). Importantly, spinal KCC2 impairment triggers pain hypersensitivity through α2δ-1-coupled NMDA receptors. These findings pinpoint the cell and molecular substrates for the reciprocal relationship between spinal synaptic inhibition and excitation in chronic neuropathic pain. Targeting both KCC2 and α2δ-1­NMDA receptor complexes could be an effective strategy in managing neuropathic pain conditions.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Symporters , Animals , Female , Male , Mice , gamma-Aminobutyric Acid/metabolism , N-Methylaspartate/pharmacology , Peptides/pharmacology , Posterior Horn Cells/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Spinal Cord/metabolism , Symporters/genetics , Symporters/metabolism , Synapses/metabolism
18.
Circ Res ; 133(7): 611-627, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37605933

ABSTRACT

BACKGROUND: Calcineurin is highly enriched in immune T cells and the nervous system. Calcineurin inhibitors, including cyclosporine and tacrolimus (FK506), are the cornerstone of immunosuppressive regimens for preserving transplanted organs and tissues. However, these drugs often cause persistent hypertension owing to excess sympathetic outflow, which is maintained by N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory input to the hypothalamic paraventricular nucleus (PVN). It is unclear how calcineurin inhibitors increase NMDAR activity in the PVN to augment sympathetic vasomotor activity. α2δ-1 (encoded by the Cacna2d1 gene), known colloquially as a calcium channel subunit, is a newly discovered NMDAR-interacting protein. In this study, we determined whether α2δ-1 plays a role in calcineurin inhibitor-induced synaptic NMDAR hyperactivity in the PVN and hypertension development. METHODS: Immunoblotting and coimmunoprecipitation assays were used to quantify synaptic protein levels and the physical interaction between GluN1 (the obligatory NMDAR subunit) and α2δ-1. Whole-cell patch-clamp recordings of retrogradely labeled, spinally projecting PVN were conducted in perfused brain slices to measure presynaptic and postsynaptic NMDAR activity. Radio-telemetry was implanted in rodents to continuously record arterial blood pressure in conscious states. RESULTS: Prolonged treatment with FK506 in rats significantly increased protein levels of α2δ-1, GluN1, and the α2δ-1-GluN1 complex in PVN synaptosomes. These effects were blocked by inhibiting α2δ-1 with gabapentin or interrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus peptide. Treatment with FK506 potentiated the activity of presynaptic and postsynaptic NMDARs in spinally projecting PVN neurons; such effects were abolished by gabapentin, Cacna2d1 knockout, or α2δ-1 C-terminus peptide. Furthermore, microinjection of α2δ-1 C-terminus peptide into the PVN diminished renal sympathetic nerve discharges and arterial blood pressure that had been increased by FK506 treatment. Remarkably, concurrent administration of gabapentin prevented the development of FK506-induced hypertension in rats. Additionally, FK506 treatment induced sustained hypertension in wild-type mice but not in Cacna2d1 knockout mice. CONCLUSIONS: α2δ-1 is essential for calcineurin inhibitor-induced increases in synaptic NMDAR activity in PVN presympathetic neurons and sympathetic outflow. Thus, α2δ-1 and α2δ-1-bound NMDARs represent new targets for treating calcineurin inhibitor-induced hypertension. Gabapentinoids (gabapentin and pregabalin) could be repurposed for treating calcineurin inhibitor-induced neurogenic hypertension.


Subject(s)
Calcineurin Inhibitors , Hypertension , Animals , Mice , Rats , Calcineurin Inhibitors/pharmacology , Receptors, N-Methyl-D-Aspartate , Tacrolimus/toxicity , Gabapentin , Brain , Hypertension/chemically induced , Aspartic Acid
19.
Altern Ther Health Med ; 29(8): 134-138, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37535919

ABSTRACT

Objective: To analyze the effect of C7-T1 extensional posterior transpedicular vertebral osteotomy (PSO) on mobility and quality of life in patients with ankylosing spondylitis (AS) and lumbar kyphosis. Methods: This study was conducted from February 2019 to February 2021 and a total of 38 patients with AS combined with kyphosis from Tianjin Union Medical Center, Tianjin, China, were selected for the study. After performing all preoperative examinations, all patients were treated with C7-T1 extensional posterior PSO osteotomy. The patients' operation and follow-up, pain degree as a Visual analogue scale (VAS) score and sagittal balance index changes before and after surgery, spinal function measured as; Bath Ankylosing Spondylitis Functional Index (BASFI) score and quality of life by Scoliosis Research Society-22 (SRS-22) score, were observed before and after surgery. Pearson correlation coefficient was used to analyze the correlation between patients' quality of life and BASFI score. Results: After surgery, the pain of the patients' back was significantly relieved, the patients' appearance and trunk balance function were significantly improved, and the symptoms related to nerve function were not significantly aggravated. No complications such as infection, internal fixation failure or spinal decompensation occurred in all patients. VAS score, kyphosis Cobb Angle and Sagittal Vertical Axis (SVA) of all patients showed P < .05 before and 1 year after surgery. BASFI score 1 year after surgery decreased significantly than that before surgery (P < .05). 1 year after surgery, body function, pain symptoms, self-image and psychological state of the patients were significantly improved, and the SRS-22 total score of the patients 1 year after surgery increased significantly than before surgery (P < 0.05). BASFI score was negatively correlated with SRS-22 score by Pearson correlation coefficient analysis (P < .05). Conclusion: C7-T1 extensional posterior PSO osteotomy has a good effect in the treatment of AS patients with lumbar kyphosis. The sagittal balance was well-restored with improvement in patients' quality of life after surgery, which makes C7-T1 osteotomy worthy of clinical application to treat patients suffering from AS combined with lumbar kyphosis.


Subject(s)
Kyphosis , Scoliosis , Spondylitis, Ankylosing , Humans , Scoliosis/complications , Scoliosis/surgery , Spondylitis, Ankylosing/complications , Spondylitis, Ankylosing/surgery , Quality of Life , Treatment Outcome , Kyphosis/surgery , Kyphosis/complications , Osteotomy/adverse effects , Osteotomy/methods , Pain , Retrospective Studies
20.
Parasit Vectors ; 16(1): 280, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580819

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is increasing worldwide. Although there is currently no completely curative treatment, helminthic therapy shows certain therapeutic potential for UC. Many studies have found that Trichinella spiralis (T.s) has a protective effect on UC, but the specific mechanism is still unclear. METHODS: Balb/c mice drank dextran sulfate sodium (DSS) to induce acute colitis and then were treated with T.s. In vitro experiments, the LPS combination with ATP was used to induce the pyroptosis model, followed by intervention with crude protein from T.s (T.s cp). Additionally, the pyroptosis agonist of NSC or the pyroptosis inhibitor vx-765 was added to intervene to explore the role of pyroptosis in DSS-induced acute colitis. The degree of pyroptosis was evaluated by western blot, qPCR and IHC, etc., in vivo and in vitro. RESULTS: T.s intervention significantly inhibited NLRP3 inflammasome activation and GSDMD-mediated pyroptosis by downregulating the expression of pyroptosis-related signatures in vitro (cellular inflammatory model) and in vivo (DSS-induced UC mice model). Furthermore, blockade of GSDMD-mediated pyroptosis by the caspase-1 inhibitor vx-765 has a similar therapeutic effect on DSS-induced UC mice with T.s intervention, thus indicating that T.s intervention alleviated DSS-induced UC in mice by inhibiting GSDMD-mediated pyroptosis. CONCLUSION: This study showed that T.s could alleviate the pathological severity UC via GSDMD-mediated pyroptosis, and it provides new insight into the mechanistic study and application of helminths in treating colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Gasdermins , Inflammatory Bowel Diseases , Trichinella spiralis , Animals , Mice , Colitis/chemically induced , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Dextran Sulfate/toxicity , Disease Models, Animal , Mice, Inbred C57BL , Pyroptosis
SELECTION OF CITATIONS
SEARCH DETAIL