Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Mater ; 5(11): 901-8, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17041584

ABSTRACT

The study of charge transport through increasingly complex small molecules will benefit from a detailed understanding of how contaminants from the environment affect molecular conduction. This should provide a clearer picture of the electronic characteristics of molecules by eliminating interference from adsorbed species. Here we use magnetically assembled microsphere junctions incorporating thiol monolayers to provide insight into changing electron transport characteristics resulting from exposure to air. Using this technique, current-voltage analysis and inelastic electron tunnelling spectroscopy (IETS) demonstrate that the primary interaction affecting molecular conduction is rapid hydration at the gold-sulphur contacts. We use IETS to present evidence for changing mechanisms of charge transport as a result of this interaction. The detrimental effects on molecular conduction discussed here are important for understanding electron transport through gold-thiol molecular junctions once exposed to atmospheric conditions.


Subject(s)
Electrochemistry/methods , Electrodes , Gold/chemistry , Sulfhydryl Compounds/chemistry , Sulfur/chemistry , Water/chemistry , Electron Transport
2.
Langmuir ; 21(24): 11061-70, 2005 Nov 22.
Article in English | MEDLINE | ID: mdl-16285772

ABSTRACT

Self-assembled monolayers (SAMs) of the isocyano derivative of 4,4'-di(phenylene-ethynylene)benzene (1), a member of the "OPE" family of "molecular wires" of current interest in molecular electronics, have been prepared on smooth, {111} textured films of Au and Pd. For assembly in oxygen-free environments with freshly deposited metal surfaces, infrared reflection spectroscopy (IRS) indicates the molecules assume a tilted structure with average tilt angles of 18-24 degrees from the surface normal. The combination of IRS, X-ray photoelectron spectroscopy, and density functional theory calculations all support a single sigma-type bond of the -NC group to the Au surface and a sigma/pi-type of bond to the Pd surface. Both SAMs show significant chemical instability when exposed to typical ambient conditions. In the case of the Au SAM, even a few hours storage in air results in significant oxidation of the -NC moieties to -NCO (isocyanate) with an accompanying decrease in surface chemical bonding, as evidenced by a significant increase in instability toward dissolution in solvent. In the case of the Pd SAM, similar air exposure does not result in incorporation of oxygen or loss of solvent resistance but rather results in a chemically altered interface which is attributed to polymerization of the -NC moieties to quasi-2D poly(imine) structures. Conductance probe atomic force microscope measurements show the conductance of the degraded Pd SAMs can diminish by approximately 2 orders of magnitude, an indication that the SAM-Pd electrical contact has severely degraded. These results underscore the importance of careful control of the assembly procedures for aromatic isocyanide SAMs, particularly for applications in molecular electronics where the molecule-electrode junction is critical to the operational characteristics of the device.

3.
J Am Chem Soc ; 127(28): 10010-1, 2005 Jul 20.
Article in English | MEDLINE | ID: mdl-16011359

ABSTRACT

Reported in this contribution are the synthesis, characterization, and charge transport properties of wire-like Ru2(ap)4(OPEn), where ap is 2-anilinopyridinate and OPE is -(CCC6H4)nSCH2CH2SiMe3 with n = 1 (1) and 2 (2). Scanning tunneling microscopy (STM) measurements of compound 2 inserted into a SAM of C11 thiol reveal that molecule 2 exhibits (i) the stochastic switching characteristic of wire molecules embedded in insulating SAMs and (ii) higher conductivity than the C11 thiol SAM. More importantly, analysis of the molecular electronic decay constant (beta) exhibits a decrease of at least 15% as compared to purely organic molecular analogues. Hence, the transport characteristics of molecules can be significantly improved for nanoscale electronics through the incorporation of a Ru2 fragment into conjugated backbone.

4.
Nat Mater ; 4(2): 167-72, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15654344

ABSTRACT

Molecular electronics has been proposed as a pathway for high-density nanoelectronic devices. This pathway involves the development of a molecular memory device based on reversible switching of a molecule between two conducting states in response to a trigger, such as an applied voltage. Here we demonstrate that voltage-triggered switching is indeed a molecular phenomenon by carrying out studies on the same molecule using three different experimental configurations-scanning tunnelling microscopy, crossed-wire junction, and magnetic-bead junction. We also demonstrate that voltage-triggered switching is distinctly different from stochastic switching, essentially a transient (time-dependent) phenomenon that is independent of the applied voltage.

6.
Biosens Bioelectron ; 19(12): 1649-55, 2004 Jul 15.
Article in English | MEDLINE | ID: mdl-15142599

ABSTRACT

Coupling of photosynthetic reaction centers (RCs) with inorganic surfaces is attractive for the identification of the mechanisms of interprotein electron transfer (ET) and for possible applications in construction of photo- and chemosensors. Here we show that RCs from Rhodobacter sphaeroides can be immobilized on gold surfaces with the RC primary donor looking towards the substrate by using a genetically engineered poly-histidine tag (His(7)) at the C-terminal end of the M-subunit and a Ni-NTA terminated self-assembled monolayer (SAM). In the presence of an electron acceptor, ubiquinone-10, illumination of this RC electrode generates a cathodic photocurrent. The action spectrum of the photocurrent coincides with the absorption spectrum of RC and the photocurrent decreases in response to the herbicide, atrazine, confirming that the RC is the primary source of the photoresponse. Disruption of the Ni-NTA-RC bond by imidazole leads to about 80% reduction of the photocurrent indicating that most of the photoactive protein is specifically bound to the electrode through the linker.


Subject(s)
Atrazine/analysis , Biosensing Techniques/instrumentation , Crystallization/methods , Electrochemistry/instrumentation , Nickel/chemistry , Nitrilotriacetic Acid/analogs & derivatives , Nitrilotriacetic Acid/chemistry , Organometallic Compounds/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Adsorption , Atrazine/chemistry , Biosensing Techniques/methods , Coated Materials, Biocompatible/chemistry , Electrochemistry/methods , Equipment Design , Equipment Failure Analysis , Gold/chemistry , Herbicides/analysis , Herbicides/chemistry , Light , Macromolecular Substances/chemical synthesis , Materials Testing , Photosynthetic Reaction Center Complex Proteins/radiation effects , Protein Binding , Protein Conformation
7.
J Am Chem Soc ; 125(11): 3202-3, 2003 Mar 19.
Article in English | MEDLINE | ID: mdl-12630861

ABSTRACT

To investigate the electrical characteristics of organometallic complexes as molecular conductors, organometallic pi-conjugated molecules of the type trans-[PtL2(CCC6H4SAc-4)2], where L = PCy3, PBu3, PPh3, P(OEt)3, P(OPh)3, were synthesized and characterized by NMR, IR, UV, and X-ray spectroscopies. For the three complexes (L = PCy3, PPh3, and P(OEt)3) that could be measured using a cross-wire junction technique, the current-voltage (I-V) characteristics of a molecular monolayer of these complexes showed no ligand effect, despite spectroscopic evidence that electronic interaction between the phosphine ligands and the pi-system does occur. It was concluded that the tunneling efficiency across the molecule is the determining factor for conduction in this metal-molecule-metal system. It was also shown that the incorporation of a transition metal in pi-conjugated molecular wires does not adversely affect charge transport compared to all-carbon pi-conjugated molecular wires.

8.
J Am Chem Soc ; 124(36): 10654-5, 2002 Sep 11.
Article in English | MEDLINE | ID: mdl-12207510

ABSTRACT

Current-voltage (I-V) characteristics for metal-molecule-metal junctions formed from three classes of molecules measured with a simple crossed-wire molecular electronics test-bed are reported. Junction conductance as a function of molecular structure is consistent with I-V characteristics calculated from extended Hückel theory coupled with a Green's function approach, and can be understood on the basis of bond-length alternation.

SELECTION OF CITATIONS
SEARCH DETAIL