Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39001152

ABSTRACT

The search for structural and microstructural defects using simple human vision is associated with significant errors in determining voids, large pores, and violations of the integrity and compactness of particle packing in the micro- and macrostructure of concrete. Computer vision methods, in particular convolutional neural networks, have proven to be reliable tools for the automatic detection of defects during visual inspection of building structures. The study's objective is to create and compare computer vision algorithms that use convolutional neural networks to identify and analyze damaged sections in concrete samples from different structures. Networks of the following architectures were selected for operation: U-Net, LinkNet, and PSPNet. The analyzed images are photos of concrete samples obtained by laboratory tests to assess the quality in terms of the defection of the integrity and compactness of the structure. During the implementation process, changes in quality metrics such as macro-averaged precision, recall, and F1-score, as well as IoU (Jaccard coefficient) and accuracy, were monitored. The best metrics were demonstrated by the U-Net model, supplemented by the cellular automaton algorithm: precision = 0.91, recall = 0.90, F1 = 0.91, IoU = 0.84, and accuracy = 0.90. The developed segmentation algorithms are universal and show a high quality in highlighting areas of interest under any shooting conditions and different volumes of defective zones, regardless of their localization. The automatization of the process of calculating the damage area and a recommendation in the "critical/uncritical" format can be used to assess the condition of concrete of various types of structures, adjust the formulation, and change the technological parameters of production.

2.
Materials (Basel) ; 17(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39063705

ABSTRACT

Three-dimensional printing technology (3D printing) is becoming a more and more popular technology for aerospace, biology, medicine, mechanics, civil and other engineering fields. In civil engineering, researchers and engineers attempt to print construction materials such as concrete using 3D-printing technology. This study aims to investigate the reinforcement of concrete beams with 3D printing. To achieve this, fused deposition modeling (FDM) technology as a printing method and polylactic acid (PLA) as a material were selected. Two types of geometries were chosen to find the optimal mechanical behavior of concrete: high-performance concrete (HPC) reinforced with four types of trusses (Pratt, Howe, Warren, and Warren with vertical) and ultra-high-performance concrete (UHPC) reinforced with a hyperboloid shell structure. The compressive and tensile strengths of reinforced UHPC were examined by a three-point bending test, and reinforced HPC was examined by a four-point bending test. The results of the experiments show that hyperboloid shell structures can absorb energy, although the strength of reinforced UHPC is reduced. For example, there was a decrease of over 20% in the compressive strength and 41% in the flexural strength, but the ductility was raised. Adding the hyperboloid shell structure improved the deformability of the UHPC. When Warren and Howe trusses were added to the HPC as reinforcements, the flexural strength improved by over 26% and 4.3%, respectively. The overall results of this study show that the concrete reinforced with 3D-printed trusses was better than that with a hyperboloid shell structure.

3.
Sci Rep ; 14(1): 10401, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710750

ABSTRACT

This investigation considered the usability of ceramic waste powder (CWP) in altered quantities in reinforced concrete beams (RCBs). In this way, it was aimed to reduce the environmental impacts of concrete by using CWP as a raw material in RCBs. 12 small-scale shear RCBs with the dimensions of 100 × 150 × 1000 mm were tested in this study. The variations of stirrups spacing and CWP ratio were examined in these specimens. The percentages of CWP by weight utilized in RCBs were 10%, 20%, and 30%, and stirrups spacings were adopted as 270 mm, 200 mm, and 160 mm. At the end of the study, it was determined that more than 10% CWP additive negatively affected the RCBs' compressive strength. The load-carrying capacity reduced between 30.3% and 59.4% when CWP increased from 0% to 30% as compared to RCB with stirrups spacing of 270 mm without CWP. However, compared to RCB with stirrups spacings of 200 mm and 160 mm without CWP, there were decreases in the load-carrying capacity as 21.4%-54.3% and 18.6%-54.6%, respectively. While the CWP ratio increased, the specimens with 160 mm, 200 mm, and 270 mm stirrups spacings obtained a lower maximum load value. However, with the increase of the CWP ratio in the specimens with 160 mm stirrups spacing, RCBs reached the maximum load-carrying capacity at an earlier displacement value. When stirrups spacing was selected as 270 mm, it was observed that the maximum load-carrying capacity of RCBs reached at a similar displacement value as the CWP ratio increased. Besides, it was resulted that the bending stiffness of RCBs reduced as the quantity of CWP enhanced. The bending stiffness decreased by 29.1% to 66.4% in the specimens with 270 mm stirrups spacing, 36.3% to 20.2% with 200 mm stirrups spacing, and 10.3% to 36.9% with 160 mm stirrups spacing. As an implication of the experiments, the use of CWP up to 10% in RCBs was realized as an economical and environmental approach and is suggested. There is some evidence to report that making use of CWP may be considered to be ecologically benign. This is due to the fact that reusing CWP may significantly reduce CO2 emissions, save energy, and reduce total power consumption. Furthermore, the experimental results were compared to the analytical calculations.

4.
Heliyon ; 10(8): e28388, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38638992

ABSTRACT

Carbon nanotube (CNT) reinforcement can lead to a new way to enhance the properties of composites by transforming the reinforcement phases into nanoscale fillers. In this study, the buckling response of functionally graded CNT-reinforced composite (FG-CNTRC) sandwich beams was investigated experimentally and analytically. The top and bottom plates of the sandwich beams were composed of carbon fiber laminated composite layers and hard core. The hard core was made of a pultruded glass fiber-reinforced polymer (GFRP) profile. The layers of FG-CNTRC surfaces were reinforced with different proportions of CNT. The reference sample was made of only a pultruded GFRP profile. In the study, the reference sample and four samples with CNT were tested under compression. The largest buckling load difference between the reference sample and the sample with CNT was 37.7%. The difference between the analytical calculation results and experimental results was obtained with an approximation of 0.49%-4.92%. Finally, the buckling, debonding, interlaminar cracks, and fiber breakage were observed in the samples.

5.
Materials (Basel) ; 17(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38673247

ABSTRACT

Current regulatory documents and the scientific literature lack a theoretical framework and practical guidance for calculating centrifugally compacted reinforced concrete structures, taking into account the variatropy of their structure and the material's characteristics across the section. A problem related to this research lies in the need to form a systematized, theoretical, and practical knowledge base about variatropic concretes, the importance of which has been proven by various scientists without, to date, the creation of a unified scientific methodological base. The importance of this study is linked to the need for the world's construction projects and processes to transition to the most economically, materially, and resource-efficient types of building structures, which, of course, include structures made of variable-type concrete. This study's objective is to fill these scientific and engineering gaps. The purpose of this study was to systematize the existing knowledge base about the technology, structure formation, and properties of variatropic concrete, using an analytical review of previously conducted studies by ourselves and others, both in Russia and abroad. A theoretical justification for the formation of the structure of variatropic materials is presented. An analysis of the basic physical and mechanical properties of variatropic concretes is carried out and the features of their microstructures are considered. The main structures created using centrifugation technology are considered. Variatropic concrete has an increased amount of mechanical characteristics compared to traditional concrete, on average by up to 45%. The durability of variatropic concrete is improved, on average, by up to 30% compared to conventional concrete.

6.
Polymers (Basel) ; 16(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475325

ABSTRACT

The application of polymer materials in concrete structures is widespread and effectively used. However, there is a lack of a systematic knowledge base about the structure formation and properties of variatropic vibrocentrifuged modified fiber-reinforced concrete. The purpose of this work is the investigation of the influence of polypropylene (PF) and basalt fiber (BF) and modification with microsilica (MS) on the properties of variatropic concretes obtained using the synthesized vibration centrifugation technology. Test samples were made using vibration centrifugation technology, followed by sawing. Various types of fiber reinforcement were studied, both individually and in combination. To determine the degree of effectiveness of each recipe solution, the following main characteristics were monitored: the density and workability of concrete mixtures; the density of hardened composites; compressive strength (CS); bending strength (BS); water absorption (WA). In variatropic vibrocentrifuged concrete, the greatest efficiency is achieved with dispersed BF reinforcement in an amount of 1.5%. Compared to the control composition, the increase in CS was 8.50%, the increase in BS was 79.17%, and WA decreased by 27.54%. With PF reinforcement, the greatest effect was recorded at a dosage of 1.0%. The increase in CS was 3.16%, the increase in BS was 10.42%, and WA decreased by 17.39%. The MS modification showed the best effect with 8% replacement of part of the Portland cement. The increase in CS was 17.43%, the increase in BS was 14.58%, and WA decreased by 33.30%. The most effective and economically rational formulation solution for vibrocentrifuged concrete is combined fiber reinforcement in combination with the MS modification in the following quantities: BF-1.0%; PF-0.5%; MS-8%. The increase in CS was 22.82%, the increase in BS was 85.42%, and WA decreased by 37.68%.

SELECTION OF CITATIONS
SEARCH DETAIL