Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Elife ; 132024 May 15.
Article En | MEDLINE | ID: mdl-38747717

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , RNA, Double-Stranded , Ribonuclease III , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease III/metabolism , Ribonuclease III/chemistry , Ribonuclease III/genetics , Cryoelectron Microscopy , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA Helicases/chemistry , Protein Binding , Adenosine Triphosphate/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/chemistry
2.
Nat Commun ; 15(1): 1165, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38326311

The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.


Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Mice , Humans , Proteomics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Translocation, Genetic , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Kidney Neoplasms/genetics , Chromatin/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Chromosomes, Human, X/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Valosin Containing Protein/genetics
3.
bioRxiv ; 2024 Jan 24.
Article En | MEDLINE | ID: mdl-37790392

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, C. elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.

4.
bioRxiv ; 2023 Oct 02.
Article En | MEDLINE | ID: mdl-37873234

The t(X,17) chromosomal translocation, generating the ASPSCR1-TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCC), frustrating efforts to identify therapeutic targets for these rare cancers. Proteomic analysis showed that VCP/p97, an AAA+ ATPase with known segregase function, was strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1-TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1-TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributed with ASPSCR1-TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrated the oncogenic transcriptional signature of ASPSCR1-TFE3, by facilitating assembly of higher-order chromatin conformation structures as demonstrated by HiChIP. Finally, ASPSCR1-TFE3 and VCP demonstrated co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.

5.
Mol Cell ; 83(21): 3852-3868.e6, 2023 Nov 02.
Article En | MEDLINE | ID: mdl-37852256

The Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with ß-propeller domains. Here, we determine the structures of human CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gß5, a component of Regulator of G protein Signaling (RGS) complexes. Cryoelectron microscopy (cryo-EM) and image processing reveal an ensemble of distinct snapshots that represent the folding trajectory of Gß5 from an unfolded molten globule to a fully folded ß-propeller. These structures reveal the mechanism by which CCT directs Gß5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual ß sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT orchestrates folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.


GTP-Binding Proteins , Molecular Chaperones , Humans , Cryoelectron Microscopy , Molecular Chaperones/metabolism , GTP-Binding Proteins/metabolism , Protein Folding , Signal Transduction , Chaperonins
6.
bioRxiv ; 2023 May 04.
Article En | MEDLINE | ID: mdl-37205387

The cytosolic Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with ß-propeller domains. Here, we determined structures of CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gß5, a component of Regulator of G protein Signaling (RGS) complexes. Cryo-EM and image processing revealed an ensemble of distinct snapshots that represent the folding trajectory of Gß5 from an unfolded molten globule to a fully folded ß-propeller. These structures reveal the mechanism by which CCT directs Gß5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual ß-sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT directs folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.

7.
Bio Protoc ; 13(2)2023 Jan 20.
Article En | MEDLINE | ID: mdl-36789166

Single-particle electron cryo-microscopy (cryo-EM) is an effective tool to determine high-resolution structures of macromolecular complexes. Its lower requirements for sample concentration and purity make it an accessible method to determine structures of low-abundant protein complexes, such as those isolated from native sources. While there are many approaches to protein purification for cryo-EM, attaining suitable particle quality and abundance is generally the major bottleneck to the typical single-particle project workflow. Here, we present a protocol using budding yeast ( S. cerevisiae ), in which a tractable immunoprecipitation tag (3xFLAG) is appended at the endogenous locus of a gene of interest (GOI). The modified gene is expressed under its endogenous promoter, and cells are grown and harvested using standard procedures. Our protocol describes the steps in which the tagged proteins and their associated complexes are isolated within three hours of thawing cell lysates, after which the recovered proteins are used directly for cryo-EM specimen preparation. The prioritization of speed maximizes the ability to recover intact, scarce complexes. The protocol is generalizable to soluble yeast proteins that tolerate C-terminal epitope tags. Graphical abstract Overview of lysate-to-grid workflow. Yeast cells are transformed to express a tractable tag on a gene of interest. Following cell culture and lysis, particles of interest are rapidly isolated by co-immunoprecipitation and prepared for cryo-EM imaging (created with BioRender.com).

8.
bioRxiv ; 2023 May 13.
Article En | MEDLINE | ID: mdl-38654823

The Cdc48 AAA+ ATPase is an abundant and essential enzyme that unfolds substrates in multiple protein quality control pathways. The enzyme includes two conserved AAA+ ATPase cassettes, D1 and D2, that assemble as hexameric rings with D1 stacked above D2. Here, we report an ensemble of structures of Cdc48 affinity purified from lysate in complex with the adaptor Shp1 in the act of unfolding substrate. Our analysis reveals a continuum of structural snapshots that spans the entire translocation cycle. These data reveal new elements of Shp1-Cdc48 binding and support a "hand-over-hand" mechanism in which the sequential movement of individual subunits is closely coordinated. D1 hydrolyzes ATP and disengages from substrate prior to D2, while D2 rebinds ATP and re-engages with substrate prior to D1, thereby explaining the dominant role played by D2 in substrate translocation/unfolding.

9.
Nat Commun ; 13(1): 2640, 2022 05 12.
Article En | MEDLINE | ID: mdl-35552390

The p97 AAA+ATPase is an essential and abundant regulator of protein homeostasis that plays a central role in unfolding ubiquitylated substrates. Here we report two cryo-EM structures of human p97 in complex with its p47 adaptor. One of the conformations is six-fold symmetric, corresponds to previously reported structures of p97, and lacks bound substrate. The other structure adopts a helical conformation, displays substrate running in an extended conformation through the pore of the p97 hexamer, and resembles structures reported for other AAA unfoldases. These findings support the model that p97 utilizes a "hand-over-hand" mechanism in which two residues of the substrate are translocated for hydrolysis of two ATPs, one in each of the two p97 AAA ATPase rings. Proteomics analysis supports the model that one p97 complex can bind multiple substrate adaptors or binding partners, and can process substrates with multiple types of ubiquitin modification.


Molecular Chaperones , Ubiquitin , Humans , Models, Molecular , Molecular Chaperones/metabolism , Protein Conformation , Ubiquitin/metabolism , Valosin Containing Protein/metabolism
10.
Cell Rep ; 36(10): 109663, 2021 09 07.
Article En | MEDLINE | ID: mdl-34496247

Although the roles of initiation factors, RNA binding proteins, and RNA elements in regulating translation are well defined, how the ribosome functionally diversifies remains poorly understood. In their human hosts, poxviruses phosphorylate serine 278 (S278) at the tip of a loop domain in the small subunit ribosomal protein RACK1, thereby mimicking negatively charged residues in the RACK1 loops of dicot plants and protists to stimulate translation of transcripts with 5' poly(A) leaders. However, how a negatively charged RACK1 loop affects ribosome structure and its broader translational output is not known. Here, we show that although ribotoxin-induced stress signaling and stalling on poly(A) sequences are unaffected, negative charge in the RACK1 loop alters the swivel motion of the 40S head domain in a manner similar to several internal ribosome entry sites (IRESs), confers resistance to various protein synthesis inhibitors, and broadly supports noncanonical modes of translation.


Neoplasm Proteins/metabolism , Receptors for Activated C Kinase/metabolism , Ribosomes/metabolism , Humans , Models, Molecular , Peptide Chain Initiation, Translational , Protein Biosynthesis/physiology , Ribosome Subunits, Small, Eukaryotic/metabolism
12.
Science ; 365(6452): 502-505, 2019 08 02.
Article En | MEDLINE | ID: mdl-31249134

The cellular machine Cdc48 functions in multiple biological pathways by segregating its protein substrates from a variety of stable environments such as organelles or multi-subunit complexes. Despite extensive studies, the mechanism of Cdc48 has remained obscure, and its reported structures are inconsistent with models of substrate translocation proposed for other AAA+ ATPases (adenosine triphosphatases). Here, we report a 3.7-angstrom-resolution structure of Cdc48 in complex with an adaptor protein and a native substrate. Cdc48 engages substrate by adopting a helical configuration of substrate-binding residues that extends through the central pore of both of the ATPase rings. These findings indicate a unified hand-over-hand mechanism of protein translocation by Cdc48 and other AAA+ ATPases.


Intracellular Signaling Peptides and Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Valosin Containing Protein/chemistry , Cryoelectron Microscopy , Immunoprecipitation , Protein Domains , Substrate Specificity
13.
Elife ; 82019 06 11.
Article En | MEDLINE | ID: mdl-31184588

Many AAA+ ATPases form hexamers that unfold protein substrates by translocating them through their central pore. Multiple structures have shown how a helical assembly of subunits binds a single strand of substrate, and indicate that translocation results from the ATP-driven movement of subunits from one end of the helical assembly to the other end. To understand how more complex substrates are bound and translocated, we demonstrated that linear and cyclic versions of peptides bind to the S. cerevisiae AAA+ ATPase Vps4 with similar affinities, and determined cryo-EM structures of cyclic peptide complexes. The peptides bind in a hairpin conformation, with one primary strand equivalent to the single chain peptide ligands, while the second strand returns through the translocation pore without making intimate contacts with Vps4. These observations indicate a general mechanism by which AAA+ ATPases may translocate a variety of substrates that include extended chains, hairpins, and crosslinked polypeptide chains.


ATPases Associated with Diverse Cellular Activities/metabolism , Adenosine Triphosphatases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Peptides, Cyclic/metabolism , Peptides/metabolism , Saccharomyces cerevisiae Proteins/metabolism , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/genetics , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Binding, Competitive , Cryoelectron Microscopy , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/genetics , Endosomes , Models, Molecular , Peptides/chemistry , Peptides, Cyclic/chemistry , Protein Binding , Protein Conformation , Protein Multimerization , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
14.
Nat Commun ; 9(1): 2197, 2018 06 06.
Article En | MEDLINE | ID: mdl-29875445

Eukaryotic cells employ the ribosome-associated quality control complex (RQC) to maintain homeostasis despite defects that cause ribosomes to stall. The RQC comprises the E3 ubiquitin ligase Ltn1p, the ATPase Cdc48p, Rqc1p, and Rqc2p. Upon ribosome stalling and splitting, the RQC assembles on the 60S species containing unreleased peptidyl-tRNA (60S:peptidyl-tRNA). Ltn1p and Rqc1p facilitate ubiquitination of the incomplete nascent chain, marking it for degradation. Rqc2p stabilizes Ltn1p on the 60S and recruits charged tRNAs to the 60S to catalyze elongation of the nascent protein with carboxy-terminal alanine and threonine extensions (CAT tails). By mobilizing the nascent chain, CAT tailing can expose lysine residues that are hidden in the exit tunnel, thereby supporting efficient ubiquitination. If the ubiquitin-proteasome system is overwhelmed or unavailable, CAT-tailed nascent chains can aggregate in the cytosol or within organelles like mitochondria. Here we identify Vms1p as a tRNA hydrolase that releases stalled polypeptides engaged by the RQC.


Carrier Proteins/genetics , Protein Biosynthesis/genetics , Ribosome Subunits, Large, Eukaryotic/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Carrier Proteins/metabolism , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Peptides/genetics , Peptides/metabolism , Protein Binding , Quality Control , RNA, Transfer, Amino Acyl/genetics , RNA, Transfer, Amino Acyl/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism
15.
Anal Bioanal Chem ; 410(8): 2053-2057, 2018 Mar.
Article En | MEDLINE | ID: mdl-29423601

The 2017 Nobel Prize in Chemistry was awarded to Jacques Dubochet, Joachim Frank, and Richard Henderson for "developing cryo-electron microscopy (cryo-EM) for the high-resolution structure determination of biomolecules in solution." This feature article summarizes some of the major achievements leading to the development of cryo-EM and recent technological breakthroughs that have transformed the method into a mainstream tool for structure determination.


Cryoelectron Microscopy/methods , Nobel Prize , Animals , Cryoelectron Microscopy/history , History, 20th Century , History, 21st Century , Humans , Microscopy, Electron, Transmission/history , Microscopy, Electron, Transmission/methods , Models, Molecular , Proteins/ultrastructure , Ribosomes/ultrastructure
16.
Science ; 359(6373): 329-334, 2018 01 19.
Article En | MEDLINE | ID: mdl-29269422

Invertebrates rely on Dicer to cleave viral double-stranded RNA (dsRNA), and Drosophila Dicer-2 distinguishes dsRNA substrates by their termini. Blunt termini promote processive cleavage, while 3' overhanging termini are cleaved distributively. To understand this discrimination, we used cryo-electron microscopy to solve structures of Drosophila Dicer-2 alone and in complex with blunt dsRNA. Whereas the Platform-PAZ domains have been considered the only Dicer domains that bind dsRNA termini, unexpectedly, we found that the helicase domain is required for binding blunt, but not 3' overhanging, termini. We further showed that blunt dsRNA is locally unwound and threaded through the helicase domain in an adenosine triphosphate-dependent manner. Our studies reveal a previously unrecognized mechanism for optimizing antiviral defense and set the stage for the discovery of helicase-dependent functions in other Dicers.


Drosophila Proteins/chemistry , RNA Helicases/chemistry , RNA, Double-Stranded/chemistry , Ribonuclease III/chemistry , Adenosine Triphosphate/chemistry , Animals , Cryoelectron Microscopy , Drosophila Proteins/ultrastructure , Protein Binding , Protein Structure, Tertiary , RNA Cleavage , RNA Helicases/ultrastructure , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , Ribonuclease III/ultrastructure , Substrate Specificity
17.
Elife ; 62017 11 22.
Article En | MEDLINE | ID: mdl-29165244

The hexameric AAA ATPase Vps4 drives membrane fission by remodeling and disassembling ESCRT-III filaments. Building upon our earlier 4.3 Å resolution cryo-EM structure (Monroe et al., 2017), we now report a 3.2 Å structure of Vps4 bound to an ESCRT-III peptide substrate. The new structure reveals that the peptide approximates a ß-strand conformation whose helical symmetry matches that of the five Vps4 subunits it contacts directly. Adjacent Vps4 subunits make equivalent interactions with successive substrate dipeptides through two distinct classes of side chain binding pockets formed primarily by Vps4 pore loop 1. These pockets accommodate a wide range of residues, while main chain hydrogen bonds may help dictate substrate-binding orientation. The structure supports a 'conveyor belt' model of translocation in which ATP binding allows a Vps4 subunit to join the growing end of the helix and engage the substrate, while hydrolysis and release promotes helix disassembly and substrate release at the lagging end.


Adenosine Triphosphatases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphatases/chemistry , Cryoelectron Microscopy , Endosomal Sorting Complexes Required for Transport/chemistry , Models, Molecular , Protein Binding , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry
18.
Elife ; 62017 09 21.
Article En | MEDLINE | ID: mdl-28933693

Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here, we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show by electron microscopy that endophilin intercalates between turns of the dynamin helix and impairs fission by preventing trans interactions between dynamin rungs that are thought to play critical roles in membrane constriction. In living cells, overexpression of endophilin delayed both fission and transferrin uptake. Together, our observations suggest that while endophilin helps shape endocytic tubules and recruit dynamin to endocytic sites, it can also block membrane fission when present in excess by inhibiting inter-dynamin interactions. The sequence of recruitment and the relative stoichiometry of the two proteins may be critical to regulated endocytic fission.


Acyltransferases/metabolism , Dynamin I/metabolism , Endocytosis , Membranes/drug effects , Acyltransferases/chemistry , Animals , Dynamin I/chemistry , Humans , Microscopy, Electron , Protein Conformation , Rats
19.
Elife ; 62017 04 05.
Article En | MEDLINE | ID: mdl-28379137

Many important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP·BeFx, and an ESCRT-III substrate peptide. Four Vps4 subunits form a helix whose interfaces are consistent with ATP binding, is stabilized by Vta1, and binds the substrate peptide. The fifth subunit approximately continues this helix but appears to be dissociating. The final Vps4 subunit completes a notched-washer configuration as if transitioning between the ends of the helix. We propose that ATP binding propagates growth at one end of the helix while hydrolysis promotes disassembly at the other end, so that Vps4 'walks' along ESCRT-III until it encounters the ordered N-terminal domain to destabilize the ESCRT-III lattice. This model may be generally applicable to other protein-translocating AAA ATPases.


Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/ultrastructure , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , Models, Biological , Models, Chemical , Models, Molecular , Protein Binding , Protein Conformation , Protein Multimerization , Protein Transport
20.
Cell ; 167(3): 763-773.e11, 2016 Oct 20.
Article En | MEDLINE | ID: mdl-27768895

The Polycystic Kidney Disease 2 (Pkd2) gene is mutated in autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic disorders. Here, we present the cryo-EM structure of PKD2 in lipid bilayers at 3.0 Å resolution, which establishes PKD2 as a homotetrameric ion channel and provides insight into potential mechanisms for its activation. The PKD2 voltage-sensor domain retains two of four gating charges commonly found in those of voltage-gated ion channels. The PKD2 ion permeation pathway is constricted at the selectivity filter and near the cytoplasmic end of S6, suggesting that two gates regulate ion conduction. The extracellular domain of PKD2, a hotspot for ADPKD pathogenic mutations, contributes to channel assembly and strategically interacts with the transmembrane core, likely serving as a physical substrate for extracellular stimuli to allosterically gate the channel. Finally, our structure establishes the molecular basis for the majority of pathogenic mutations in Pkd2-related ADPKD.


Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/chemistry , Amino Acid Sequence , Animals , CHO Cells , Cricetulus , Cryoelectron Microscopy , HEK293 Cells , Humans , Lipid Bilayers/chemistry , Mutation, Missense , Nanostructures/chemistry , Polycystic Kidney, Autosomal Dominant/genetics , Protein Conformation, alpha-Helical , Protein Domains , TRPP Cation Channels/genetics
...