Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Clin Microbiol ; 62(2): e0012023, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38284761

ABSTRACT

Rapid phenotypic detection assays, including Carba NP and its variants, are widely applied for clinical diagnosis of carbapenemase-producing Enterobacterales (CPE). However, these tests are based on the acidification of the pH indicator during carbapenem hydrolysis, which limits test sensitivity and speed, especially for the detection of CPE producing low-activity carbapenem (e.g., OXA-48 variants). Herein, we developed a novel rapid and sensitive CPE detection method (Carba PBP) that could measure substrate (meropenem) consumption based on penicillin-binding protein (PBP). Meropenem-specific PBP was used to develop a competitive lateral flow assay (LFA) for meropenem identification. For the detection of carbapenemase activity, meropenem concentration was optimized using a checkerboard assay. The performance of Carba PBP was evaluated and compared with that of Carba NP using a panel of 94 clinical strains characterized by whole-genome sequencing and carbapenem susceptibility test. The limit of detection of PBP-based LFA for meropenem identification was 7 ng mL-1. Using 10 ng mL-1 meropenem as the substrate, Carba PBP and Carba NP could detect 10 ng mL-1 carbapenemase within 25 min and 1,280 ng mL-1 CPE in 2 h, respectively. The sensitivity and specificity were 100% (75/75) and 100% (19/19) for Carba PBP and 85.3% (64/75) and 100% (19/19) for Carba NP, respectively. When compared with Carba NP, Carba PBP showed superior performance in detecting all the tested CPE strains (including OXA-48-like variants) within 25 min and presented two orders of magnitude higher analytical sensitivity, demonstrating potential for clinical diagnosis of CPE. IMPORTANCE This study successfully achieved the goal of carbapenemase activity detection with both high sensitivity and convenience, offering a convenient lateral flow assay for clinical diagnosis of carbapenemase-producing Enterobacterales.


Subject(s)
Bacterial Proteins , beta-Lactamases , Humans , Penicillin-Binding Proteins/genetics , Meropenem/pharmacology , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/metabolism , Carbapenems/pharmacology , Sensitivity and Specificity
2.
Trends Microbiol ; 32(4): 365-378, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38008597

ABSTRACT

Colistin is regarded as a last-line drug against serious infections caused by multidrug-resistant Gram-negative bacterial pathogens. Therefore, the emergence of mobile colistin resistance (mcr) genes has attracted global concern and led to policy changes for the use of colistin in food animals across many countries. Currently, the distribution, function, mechanism of action, transmission vehicles, origin of mcr, and new treatment strategies against MCR-producing pathogens have been extensively studied. Here we review the prevalence, structure and function of mcr, the fitness cost and persistence of mcr-carrying plasmids, the impact of MCR on host immune response, as well as the control strategies to combat mcr-mediated colistin resistance.


Subject(s)
Colistin , Escherichia coli Proteins , Animals , Colistin/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Plasmids/genetics , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests
3.
Adv Healthc Mater ; 13(3): e2302170, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37921989

ABSTRACT

Hydrogels are considered as a promising medical patch for wound healing. Researches in this aspect are focused on improving their compositions and permeability to enhance the effectiveness of wound healing. Here, novel prolamins-assembled porous hydrogel microfibers with the desired merits for treating diabetes wounds are presented. Such microfibers are continuously generated by one-step microfluidic spinning technology with acetic acid solution of prolamins as the continuous phase and deionized water as the dispersed phase. By adjusting the prolamin concentration and flow rates of microfluidics, the porous structure and morphology as well as diameters of microfibers can be well tailored. Owing to their porosity, the resultant microfibers can be employed as flexible delivery systems for wound healing actives, such as bacitracin and vascular endothelial growth factor (VEGF). It is demonstrated that the resultant hydrogel microfibers are with good cell-affinity and effective drug release efficiency, and their woven patches display superior in vivo capability in treating diabetes wounds. Thus, it is believed that the proposed prolamins-assembled porous hydrogel microfibers will show important values in clinic wound treatments.


Subject(s)
Diabetes Mellitus , Microfluidics , Humans , Microfluidics/methods , Vascular Endothelial Growth Factor A/pharmacology , Porosity , Biocompatible Materials/chemistry , Wound Healing , Biopolymers , Hydrogels/pharmacology , Hydrogels/chemistry , Prolamins/pharmacology
4.
Zool Res ; 44(5): 894-904, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37551137

ABSTRACT

Conjugative transfer of antibiotic resistance genes (ARGs) by plasmids is an important route for ARG dissemination. An increasing number of antibiotic and nonantibiotic compounds have been reported to aid the spread of ARGs, highlighting potential challenges for controlling this type of horizontal transfer. Development of conjugation inhibitors that block or delay the transfer of ARG-bearing plasmids is a promising strategy to control the propagation of antibiotic resistance. Although such inhibitors are rare, they typically exhibit relatively high toxicity and low efficacy in vivo and their mechanisms of action are inadequately understood. Here, we studied the effects of dihydroartemisinin (DHA), an artemisinin derivative used to treat malaria, on conjugation. DHA inhibited the conjugation of the IncI2 and IncX4 plasmids carrying the mobile colistin resistance gene ( mcr-1) by more than 160-fold in vitro in Escherichia coli, and more than two-fold (IncI2 plasmid) in vivo in a mouse model. It also suppressed the transfer of the IncX3 plasmid carrying the carbapenem resistance gene bla NDM-5 by more than two-fold in vitro. Detection of intracellular adenosine triphosphate (ATP) and proton motive force (PMF), in combination with transcriptomic and metabolomic analyses, revealed that DHA impaired the function of the electron transport chain (ETC) by inhibiting the tricarboxylic acid (TCA) cycle pathway, thereby disrupting PMF and limiting the availability of intracellular ATP for plasmid conjugative transfer. Furthermore, expression levels of genes related to conjugation and pilus generation were significantly down-regulated during DHA exposure, indicating that the transfer apparatus for conjugation may be inhibited. Our findings provide new insights into the control of antibiotic resistance and the potential use of DHA.


Subject(s)
Escherichia coli Infections , Mice , Animals , Escherichia coli/genetics , Escherichia coli Infections/veterinary , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Plasmids/genetics
5.
Small ; 19(44): e2303887, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37392054

ABSTRACT

Wound healing, known as a fundamental healthcare issue worldwide, has been attracting great attention from researchers. Here, novel bioactive gellan gum microfibers loaded with antibacterial peptides (ABPs) and vascular endothelial growth factor (VEGF) are proposed for wound healing by using microfluidic spinning. Benefitting from the high controllability of microfluidics, bioactive microfibers with uniform morphologies are obtained. The loaded ABPs are demonstrated to effectively act on bacteria at the wound site, reducing the risk of bacterial infection. Besides, sustained release of VEGF from microfibers helps to accelerate angiogenesis and further promote wound healing. The practical value of woven bioactive microfibers is demonstrated via animal experiments, where the wound healing process is greatly facilitated because of the excellent circulation of air and nutritious substances. Featured with the above properties, it is believed that the novel bioactive gellan gum microfibers would have a remarkable effect in the field of biomedical application, especially in promoting wound healing.


Subject(s)
Microfluidics , Vascular Endothelial Growth Factor A , Animals , Wound Healing , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/chemistry
6.
Sheng Wu Gong Cheng Xue Bao ; 39(1): 34-44, 2023 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-36738199

ABSTRACT

Antimicrobial resistance has become a major public health issue of global concern. Conjugation is an important way for fast spreading drug-resistant plasmids, during which the type Ⅳ pili plays an important role. Type Ⅳ pili can adhere on the surfaces of host cell and other medium, facilitating formation of bacterial biofilms, bacterial aggregations and microcolonies, and is also a critical factor in liquid conjugation. PilV is an adhesin-type protein found on the tip of type Ⅳ pili encoded by plasmid R64, and can recognize the lipopolysaccharid (LPS) molecules that locate on bacterial membrane. The shufflon is a clustered inversion region that diversifies the PilV protein, which consequently affects the recipient recognition and conjugation frequency in liquid mating. The shufflon was firstly discovered on an IncI1 plasmid R64 and has been identified subsequently in plasmids IncI2, IncK and IncZ, as well as the pathogenicity island of Salmonella typhi. The shufflon consists of four segments including A, B, C, and D, and a specific recombination site named sfx. The shufflon is regulated by its downstream-located recombinase-encoding gene rci, and different rearrangements of the shufflon region in different plasmids were observed. Mobile colistin resistance gene mcr-1, which has attracted substantial attentions recently, is mainly located in IncI2 plasmid. The shufflon may be one of the contributors to fast spread of mcr-1. Herein, we reviewed the discovery, structure, function and prevalence of plasmid mediated shufflon, aiming to provide a theoretical basis on transmission mechanism and control strategy of drug-resistant plasmids.


Subject(s)
Bacteria , Proteins , Plasmids/genetics , Proteins/genetics , Bacteria/genetics , Recombinases , Genes, Bacterial , Anti-Bacterial Agents
7.
Genomics Proteomics Bioinformatics ; 20(6): 1168-1179, 2022 12.
Article in English | MEDLINE | ID: mdl-36481457

ABSTRACT

Emergence of the colistin resistance gene, mcr-1, has attracted worldwide attention. Despite the prevalence of mcr-1-positive Escherichia coli (MCRPEC) strains in human carriage showing a significant decrease between 2016 and 2019, genetic differences in MCRPEC strains remain largely unknown. We therefore conducted a comparative genomic study on MCRPEC strains from fecal samples of healthy human subjects in 2016 and 2019. We identified three major differences in MCRPEC strains between these two time points. First, the insertion sequence ISApl1 was often deleted and the percentage of mcr-1-carrying IncI2 plasmids was increased in MCRPEC strains in 2019. Second, the antibiotic resistance genes (ARGs), aac(3)-IVa and blaCTX-M-1, emerged and coexisted with mcr-1 in 2019. Third, MCRPEC strains in 2019 contained more virulence genes, resulting in an increased proportion of extraintestinal pathogenic E. coli (ExPEC) strains (36.1%) in MCRPEC strains in 2019 compared to that in 2016 (10.5%), implying that these strains could occupy intestinal ecological niches by competing with other commensal bacteria. Our results suggest that despite the significant reduction in the prevalence of MCRPEC strains in humans from 2016 to 2019, MCRPEC exhibits increased resistance to other clinically important ARGs and contains more virulence genes, which may pose a potential public health threat.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Humans , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Genomics , Plasmids , Population Dynamics
8.
ACS Nano ; 16(10): 16744-16756, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36222600

ABSTRACT

Cochlear implantation has become the most effective treatment method for patients with profound and total hearing loss. However, its therapeutic efficacy is dependent on the number and normal physiological function of cochlear implant-targeted spiral ganglion neurons (SGNs). Electrical stimulation can be used as an effective cue to regulate the morphology and function of excitatory cells. Therefore, it is important to develop an efficient cochlear implant electroacoustic stimulation (EAS) system to study the behavior of SGNs. In this work, we present an electrical stimulation system constructed by combining a cochlear implant and a conductive Ti3C2Tx MXene-matrigel hydrogel. SGNs were cultured in the Ti3C2Tx MXene-matrigel hydrogel and exposed to electrical stimulation transduced by the cochlear implant. It was demonstrated that low-frequency stimulation promoted the growth cone development and neurite outgrowth of SGNs as well as signal transmission between cells. This work may have potential value for the clinical application of the Ti3C2Tx MXene hydrogel to optimize the postoperative listening effect of cochlear implantation and benefit people with sensorineural hearing loss.


Subject(s)
Spiral Ganglion , Titanium , Humans , Spiral Ganglion/physiology , Titanium/pharmacology , Neurons/physiology , Electric Stimulation , Hydrogels/pharmacology
9.
Microbiol Spectr ; 10(4): e0157421, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35758676

ABSTRACT

Increasing infections caused by blaNDM-carrying Klebsiella pneumoniae (NDM-KP) are an urgent threat to children with weakened immunity and limited antibiotic use. Preventing and intervening in NDM-KP infections requires a clear understanding of the pathogen's molecular and epidemiological characteristics. We investigated the prevalence and characteristics of NDM-KP in six children's hospitals from five Chinese provinces/municipalities. We collected 111 NDM-KP strains (40 NDM-1, one NDM-4 and 70 NDM-5) from neonatal intensive care units (NICUs) and pediatric intensive care units (PICUs) from June 2017 to June 2018; these strains accounted for 31.62% of all carbapenem-resistant K. pneumoniae (CR-KP). Although NDM-KP isolates exhibited high resistance to all carbapenems, including ertapenem (MIC: ≥32 mg/L, 96.4%), imipenem (MIC: ≥16 mg/L, 90.1%) and meropenem (MIC: ≥16 mg/L, 99.1%), they were fully sensitive to amikacin, tigecycline and polymyxin B, and presented low resistance to levofloxacin (9.9%) and gentamicin (15.3%). Whole-genome sequencing was conducted to gain insight into the molecular characterizations of NDM-KP isolates. The NDM-KP isolates belonged to 20 sequence types (STs), and ST2407 (n = 45) dominated in one hospital from Chengdu. ST2407 isolates with fewer single-nucleotide polymorphisms (SNP < 38) were found either in the same hospital or different hospitals. Most blaNDM (81.1%, 90/111), including all blaNDM-5 and blaNDM-4 and 47.5% (19/40) of blaNDM-1, in NDM-KP isolates with 13 STs were associated with the IncX3 plasmid. Our results indicated that both explosive clonal transmission and horizontal transmission of blaNDM occur among NDM-KP strains in children's hospitals. These data provide a basis for preventing and controlling NDM-KP-associated infectious diseases in hospitalized children, especially in neonates. IMPORTANCE The blaNDM gene is playing an increasingly important role in infections caused by CR-KP, especially in children. However, systematic detection and bioinformatics analysis of NDM-KP in children's hospitals are lacking in China. In this study, a total of 111 NDM-positive K. pneumoniae isolates were selected from the China Antimicrobial Surveillance Network for further investigation. The isolates were further characterized using state-of-the-art molecular techniques. Our findings suggested the clonal and horizontal transmission of blaNDM in K. pneumoniae in NICUs/PICUs. Key plasmids (IncX3) and ST diversity contribute to the spread of blaNDM. In addition, our findings provided recommendations for pediatric clinicians to use antibiotics to treat NDM-KP infections. Our current large-scale epidemiological survey would support further infection intervention strategies of NDM-KP in NICU/PICU of children's hospitals.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Drug Resistance, Bacterial , Humans , Infant, Newborn , Intensive Care Units, Neonatal , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , Plasmids/genetics , beta-Lactamases/genetics
10.
Nat Food ; 3(3): 197-205, 2022 03.
Article in English | MEDLINE | ID: mdl-37117646

ABSTRACT

Antimicrobial use in livestock production is linked to the emergence and spread of antimicrobial resistance (AMR), but large-scale studies on AMR changes in livestock isolates remain scarce. Here we applied whole-genome sequence analysis to 982 animal-derived Escherichia coli samples collected in China from the 1970s to 2019, finding that the number of AMR genes (ARGs) per isolate doubled-including those conferring resistance to critically important agents for both veterinary (florfenicol and norfloxacin) and human medicine (colistin, cephalosporins and meropenem). Plasmids of incompatibility groups IncC, IncHI2, IncK, IncI and IncX increased distinctly in the past 50 years, acting as highly effective vehicles for ARG spread. Using antimicrobials of the same class, or even unrelated classes, may co-select for mobile genetic elements carrying multiple co-existing ARGs. Prohibiting or strictly curtailing antimicrobial use in livestock is therefore urgently needed to reduce the growing threat from AMR.

11.
Clin Microbiol Infect ; 28(2): 267-272, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34197932

ABSTRACT

OBJECTIVES: China banned the use of colistin as animal growth promoter in April 2017. Herein, we report the prevalence of mcr-1 in the intestine of healthy humans and risk factors associated with mcr-1 carriage after the implementation of the ban. METHODS: We recruited 719 healthy volunteers from Shenzhen City from 1 March 2018 to 31 December 2019 to investigate the prevalence of mcr-1 in human intestine, and undertook a case-control study to ascertain the risk factors associated with the mcr-1-positive population. A further comparative study was conducted to identify differences between genetic characteristics of mcr-1-positive and mcr-1-negative Escherichia coli. RESULTS: Overall, 56 (7.8%, 95% CI 5.9%-10.0%, n = 719) individual faecal samples were positive for mcr-1, and prevalence of mcr-1 among individuals in 2019 (2.4%, 95% CI 8.7%-15.0%, 7/294) was significantly lower than that in 2018 (11.5%, 95% CI 1.0%-4.8%, 49/425) (p < 0.0001). After the colistin ban, animal-derived food (pork and chicken meat) was no longer a risk factor for mcr-1 carriage in human intestine, whereas a higher intake of fish and seafood (>75 g/day) and whole grains (>150 g/day) was associated with higher and lower risk of mcr-1 carriage, respectively (OR 2.175, 95% CI 1.047-4.517; OR 0.045, 95% CI 0.004-0.567). Compared with mcr-1-negative E. coli, the mcr-1-positive E. coli had different patterns of resistance genes and genetic heterogeneity. CONCLUSIONS: Our study implicates aquatic food as beeing associated with mcr-1 carriage in the healthy population, even after the ban on colistin. Dietary modification (e.g. whole grains) may help to combat mcr-1-positive bacterial colonization of the gut.


Subject(s)
Colistin , Escherichia coli Proteins , Animals , Anti-Bacterial Agents/pharmacology , Case-Control Studies , China/epidemiology , Colistin/pharmacology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Humans , Plasmids , Prevalence , Risk Factors , Volunteers
12.
BMJ Open ; 11(12): e054971, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907071

ABSTRACT

OBJECTIVES: To provide a comprehensive assessment of the impact of carbapenem resistance on mortality among patients infected with Enterobacteriaceae and to explore the source of heterogeneity across studies. DESIGN: This systematic review was conducted following the guidelines of Cochrane Guidance and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. DATA SOURCES: We conducted a systematic literature search of the PubMed, Embase, Web of Science and Cochrane Library databases to identify relevant studies published between 1 January 1994 and 30 August 2020. ELIGIBILITY CRITERIA: We included primary observational studies published in English that reported the mortality outcomes for hospitalised patients with confirmed infections due to carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-susceptible Enterobacteriaceae (CSE). Studies with no comparison group or with a comparison group of patients infected with unconfirmed CSE were excluded. DATA EXTRACTION AND SYNTHESIS: Data extraction and assessment of risk bias were conducted independently by two reviewers. The pooled relative risk and risk difference were calculated as effect measures with 95% CIs using a random effects model. The heterogeneity across studies was assessed by Q-statistic and I2 measures. RESULTS: Of 10 304 studies initially identified, 50 studies were included in the meta-analyses. The results of the meta-analyses showed that carbapenem resistance has a significant positive effect on the probability of death for patients infected with Enterobacteriaceae for any type of mortality outcome. The results of the stratified analysis and meta-regression suggested that the effect of carbapenem resistance on the risk of death varied by infection type, sample size and year of publication. CONCLUSIONS: Our results suggested that patients with CRE infection still face a greater risk of death than patients with CSE infection do, and an urgent need to develop new antibiotics and appropriate treatments to reduce the risk of death. PROSPERO REGISTRATION NUMBER: CRD42020176808.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Anti-Bacterial Agents/therapeutic use , Carbapenems/therapeutic use , Enterobacteriaceae , Enterobacteriaceae Infections/drug therapy , Humans
13.
Front Microbiol ; 12: 729900, 2021.
Article in English | MEDLINE | ID: mdl-34489919

ABSTRACT

Contezolid is a novel oxazolidinone, which exhibits potent activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and penicillin-resistant Streptococcus pneumoniae (PRSP). In this study, the in vitro activity of contezolid was compared with linezolid (LZD), tigecycline (TGC), teicoplanin (TEC), vancomycin (VA), daptomycin (DAP), and florfenicol (FFC) against MRSA and VRE strains isolated from China. Contezolid revealed considerable activity against MRSA and VRE isolates with MIC90 values of 0.5 and 1.0 µg/mL, respectively. For VRE strains with different resistance genotypes, including vanA- and vanM-type strains, contezolid did not exhibit significantly differential antibacterial activity. Furthermore, the antimicrobial activity of contezolid is similar to or slightly better than that of linezolid against MRSA and VRE strains. Subsequently, the activity of contezolid was tested against strains carrying linezolid resistance genes, including Staphylococcus capitis carrying cfr gene and Enterococcus faecalis carrying optrA gene. The results showed that contezolid exhibited similar antimicrobial efficacy to linezolid against strains with linezolid resistance genes. In general, contezolid may have potential benefits to treat the infections caused by MRSA and VRE pathogens.

14.
Adv Sci (Weinh) ; 8(18): e2101336, 2021 09.
Article in English | MEDLINE | ID: mdl-34323389

ABSTRACT

Mobile colistin resistance enzyme MCR-3 is a phosphoethanolamine transferase modifying lipid A in Gram-negative bacteria. MCR-3 generally mediates low-level (≤8 mg L-1 ) colistin resistance among Enterobacteriaceae, but occasionally confers high-level (>128 mg L-1 ) resistance in aeromonads. Herein, it is determined that MCR-3, together with another lipid A modification mediated by the arnBCADTEF operon, may be responsible for high-level colistin resistance in aeromonads. Lipid A is the critical site of pathogens for Toll-like receptor 4 recognizing. However, it is unknown whether or how MCR-3-mediated lipid A modification affects the host immune response. Compared with the wild-type strains, increased mortality is observed in mice intraperitoneally-infected with mcr-3-positive Aeromonas salmonicida and Escherichia coli strains, along with sepsis symptoms. Further, mcr-3-positive strains show decreased clearance rates than wild-type strains, leading to bacterial accumulation in organs. The increased mortality is tightly associated with the increased tissue hypoxia, injury, and post-inflammation. MCR-3 expression also impairs phagocytosis efficiency both in vivo and in vitro, contributing to the increased persistence of mcr-3-positive bacteria in tissues compared with parental strains. This study, for the first time, reveals a dual function of MCR-3 in bacterial resistance and pathogenicity, which calls for caution in treating the infections caused by mcr-positive pathogens.


Subject(s)
Aeromonas salmonicida/drug effects , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Phagocytosis/genetics , Aeromonas salmonicida/genetics , Animals , Escherichia coli/genetics , Female , Genes, Bacterial/genetics , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests
15.
16.
Environ Int ; 144: 106005, 2020 11.
Article in English | MEDLINE | ID: mdl-32739516

ABSTRACT

Cumulative research on resistomes and microbiomes from aquatic environments has revealed that both integrated freshwater and monoculture freshwater aquaculture systems can cause the development and dissemination of antibiotic resistance genes (ARGs) and associated mobile genetic elements (MGEs). However, few studies have examined differences in resistomes between the different aquaculture modes, and those that do have focused on antibiotic residues or individual resistance genes. In the current study, we collected 44 environmental samples from two monoculture freshwater aquaculture farms and four integrated farms (two duck and fish farms, two laying duck and fish farms) in Guangdong, China, in 2018. After measuring the concentrations of antibiotic residues in the samples, we characterized MGEs and ARGs and examined their association with potential bacterial hosts in the microbial communities using high-throughput sequencing-based metagenomic and network analyses. We then compared the resistome profiles of the different aquaculture models. We found that the number and total relative abundance of ARG and MGE subtypes in the integrated (fish and duck/laying duck) farm samples were significantly higher than those in samples from monoculture freshwater aquaculture farms. Specifically, both the mobile colistin resistance genes mcr variants and tigecycline resistance gene tet(X) variants in integrated farms exhibited higher total relative abundance than that in monoculture farms. Moreover, the interrelationships among ARGs and microbial taxa, ARGs and MGEs, and MGEs and microbial taxa in the integrated farm samples were also more complex than those observed in monoculture freshwater aquaculture farm samples. Meanwhile, the species of Acinetobacter and Escherichia were identified to be the possible host of tet(X) and ESBL gene blaCTX-M in aquaculture, respectively. To the best of our knowledge, this is the first metagenomic study to analyze differences in resistome profiles between integrated and monoculture ponds. Overall, integrated aquaculture systems exhibited a higher prevalence of resistance genes compared with monoculture freshwater aquaculture farms. Therefore, additional antimicrobial resistance surveillance should be focused on this type of freshwater aquaculture system.


Subject(s)
Aquaculture , Genes, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , China , Drug Resistance, Microbial/genetics , Metagenomics
17.
Lancet Infect Dis ; 20(10): 1161-1171, 2020 10.
Article in English | MEDLINE | ID: mdl-32505232

ABSTRACT

BACKGROUND: Following the discovery and emergence of the plasmid-mediated colistin resistance gene, mcr-1, the Chinese government formally banned colistin as an animal growth promoter on April 30, 2017. Herein, we report patterns in colistin resistance and mcr-1 abundance in Escherichia coli from animals and humans between 2015 and 2019, to evaluate the effects of the colistin withdrawal. METHODS: We did an epidemiology comparative study to investigate: annual production and sales of colistin in agriculture across mainland China according to data from the China Veterinary Drug Association from 2015 to 2018; the prevalence of colistin-resistant E coli (CREC) in pigs and chickens in 23 Chinese provinces and municipalities as reported in the China Surveillance on Antimicrobial Resistance of Animal Origin database from Jan 1, 2015, to Dec 31, 2016, and Jan 1, 2017, to Dec 31, 2018; the presence of residual colistin and mcr-1 in faeces from 118 animal farms (60 pig, 29 chicken, and 29 cattle) across four provinces over July 1, 2017, to August 31, 2017, and July 1, 2018 to August 31, 2018; the prevalence of mcr-1-positive E coli (MCRPEC) carriage in healthy individuals attending routine hospital examinations across 24 provinces and municipalities from June 1 to July 30, 2019, comparing with equivalent 2016 data (June 1 to September 30) from our previous study in the same hospitals; and the patterns in CREC prevalence among hospital E coli infections across 26 provinces and municipalities from Jan 1, 2015, to Dec 31, 2016, and Jan 1, 2018, to Dec 31, 2019, reported on the China Antimicrobial Surveillance Network. FINDINGS: After the ban on colistin as a growth promoter, marked reductions were observed in the production (27 170 tonnes in 2015 vs 2497 tonnes in 2018) and sale (US$71·5 million in 2015 vs US$8·0 million in 2018) of colistin sulfate premix. Across 118 farms in four provinces, mean colistin residue concentration was 191·1 µg/kg (SD 934·1) in 2017 versus 7·5 µg/kg (50·0) in 2018 (p<0·0001), and the median relative abundance of mcr-1 per 16S RNA was 0·0009 [IQR 0·0001-0·0059] in 2017 versus 0·0002 [0·0000-0·0020] in 2018 (p=0·0001). Across 23 provinces and municipalities, CREC was identified in pig faeces in 1153 (34·0%) of 3396 samples in 2015-16 versus 142 (5·1%) of 2781 in 2017-18 (p<0·0001); and in chickens in 474 (18·1%) of 2614 samples in 2015-16 versus 143 (5·0%) of 2887 in 2017-18 (p<0·0001). In hospitals across 24 provincial capital cities and municipalities, human carriage of MCRPEC was identified in 644 (14·3%) of 4498 samples in 2016 versus 357 (6·3%) of 5657 in 2019 (p<0·0001). Clinical CREC infections in 26 provinces and municipalities comprised 1059 (1·7%) of 62 737 E coli infections in 2015-16 versus 794 (1·3%) of 59 385 in 2018-19 (p<0·0001). INTERPRETATION: The colistin withdrawal policy and the decreasing use of colistin in agriculture have had a significant effect on reducing colistin resistance in both animals and humans in China. However, continuous colistin monitoring is essential, in particular to act as an early warning system for colistin stewardship in Chinese hospitals. FUNDING: National Key Research and Development Program of China, National Natural Science Foundation of China, and UK Medical Research Council.


Subject(s)
Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli Proteins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Animal Feed/analysis , Animals , Anti-Bacterial Agents/pharmacology , China , Colistin/administration & dosage , Gene Expression Regulation, Bacterial , Humans , Legislation, Drug
18.
Environ Microbiol ; 22(7): 2469-2484, 2020 07.
Article in English | MEDLINE | ID: mdl-32114703

ABSTRACT

Colistin resistance has attracted substantial attention after colistin was considered as a last-resort drug for the treatment of infections caused by carbapenem-resistant and/or multidrug-resistant (MDR) Gram-negative bacteria in clinical settings. However, with the discovery of highly mobile colistin resistance (mcr) genes, colistin resistance has become an increasingly urgent issue worldwide. Despite many reviews, which summarized the prevalence, mechanisms, and structures of these genes in bacteria of human and animal origin, studies on the prevalence of mobile colistin resistance genes in aquaculture and their transmission between animals and humans remain scarce. Herein, we review recent reports on the prevalence of colistin resistance genes in animals, especially wildlife and aquaculture, and their possibility of transmission to humans via the food chain. This review also gives some insights into the routine surveillance, changing policy and replacement of polymyxins by polymyxin derivatives, molecular inhibitors, and traditional Chinese medicine to tackle colistin resistance.


Subject(s)
Animals, Domestic/microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Animals , Aquaculture , Bacteria/genetics , Humans , Plasmids/genetics
19.
Microorganisms ; 8(3)2020 Mar 07.
Article in English | MEDLINE | ID: mdl-32156014

ABSTRACT

The wide dissemination of New Delhi metallo-ß-lactamase genes (blaNDM) has resulted in the treatment failure of most available ß-lactam antibiotics, with IncX3-type blaNDM-5-carrying plasmids recognised as having spread worldwide. In China, bacteria carrying these plasmids are increasingly being detected from diverse samples, including hospitals, communities, livestock and poultry, and the environment, suggesting that IncX3 plasmids are becoming a vital vehicle for blaNDM dissemination. To elucidate the fitness cost of these plasmids on the bacterial host, we collected blaNDM-negative strains from different sources and tested their ability to acquire the blaNDM-5-harboring p3R-IncX3 plasmid. We then measured changes in antimicrobial susceptibility, growth kinetics, and biofilm formation following plasmid acquisition. Overall, 70.7% (29/41) of our Enterobacteriaceae recipients successfully acquired the blaNDM-5-harboring p3R-IncX3 plasmid. Contrary to previous plasmid burden theory, 75.9% (22/29) of the transconjugates showed little fitness cost as a result of plasmid acquisition, with 6.9% (2/29) of strains exhibiting enhanced growth compared with their respective wild-type strains. Following plasmid acquisition, all transconjugates demonstrated resistance to most ß-lactams, while several strains showed enhanced biofilm formation, further complicating treatment and prevention measures. Moreover, the highly virulent Escherichia coli sequence type 131 strain that already harbored mcr-1 also demonstrated the ability to acquire the blaNDM-5-carrying p3R-IncX3 plasmid, resulting in further limited therapeutic options. This low fitness cost may partly explain the rapid global dissemination of blaNDM-5-harboring IncX3 plasmids. Our study highlights the growing threat of IncX3 plasmids in spreading blaNDM-5.

20.
Int J Antimicrob Agents ; 55(1): 105856, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31770630

ABSTRACT

Two novel phosphoethanolamine transferase genes, eptAv7 and eptAv3, were identified in the chromosome of an Aeromonas jandaei isolate from retail fish. The variants showed 79.9% and 80.0% amino acid identity to MCR-7.1 and MCR-3.1, respectively, and increased colistin resistance 128- to 256-fold in Aeromonas salmonicida. The two variants with no mobile genetic element in the flanking regions were also observed in other Aeromonas species. This finding supports the view that Aeromonas is a reservoir for MCR-3 and MCR-7 mobile colistin resistance.


Subject(s)
Aeromonas/enzymology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Colistin/pharmacology , Ethanolaminephosphotransferase/genetics , Fish Diseases/microbiology , Aeromonas/drug effects , Aeromonas/genetics , Animals , Aquaculture , Drug Resistance, Bacterial , Ethanolamines/metabolism , Fishes , Humans , Phylogeny , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL