Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 676: 763-773, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39059282

ABSTRACT

Selective hydrogenation of nitroaromatics is a crucial industrial reaction, but there are still challenges in developing nanocatalysts with stable active centers, yet easily recyclable characteristics. Here, a magnetically separable Pd/Fe3O4@SiO2 nanocatalyst was prepared through the seeding growth of silica on the Fe3O4 nanocrystal cluster (NC) followed by in situ reduction of Pd nanoparticles (NPs) on the amino group modified Fe3O4@SiO2 nannotube (NT). The nanocatalyst showed good activity and stability in the hydrogenation of a series of nitroaromatics as the Pd NPs were highly dispersed on the nanotubes. Meanwhile, it could be easily separated from the reaction solution and well-redispersed in the solvent for the next-round reaction due to the superparamagnetic property of the Fe3O4 NC and the good dispersibility of silica in many organic solvents. The magnetically separable nanocatalyst combined the high activity of the nanocatalyst and the convenient separation of a traditional heterogeneous catalyst, which effectively promote the practical application of nanomaterials in catalysis.

2.
Nanoscale ; 15(48): 19703-19708, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38039054

ABSTRACT

Electrochemical seawater splitting is an intriguing strategy for green hydrogen production. Constructing advanced electrocatalysts for the hydrogen evolution reaction (HER) in seawater is extremely demanded for accelerating the sluggish kinetic process. Herein, a Ru nanocluster anchored on boron- and nitrogen-doped carbon (Ru/NBC) catalyst was successfully synthesized for the HER in alkaline/seawater electrolytes. Remarkably, Ru/NBC exhibits outstanding activity and durability, delivering low overpotentials@10 mA cm-2 in 1.0 M KOH (30 mV) and 1.0 M KOH + seawater electrolyte (35 mV), outperforming Pt/C, Ru/NC, Ru/BC and Ru/C. Additionally, Ru/NBC also provides a high specific activity of 0.093 mA cm-2ECSA at an overpotential of 150 mV, which is higher than those of Ru/NC, Ru/BC and Ru/C, respectively. Density functional theory calculation results demonstrate that the Ru-B formed interfacial chemical bond can regulate the electronic structure of Ru active sites of Ru/NBC, which can facilitate the adsorption of water and hydrogen in alkaline media. This work provides a feasible strategy to fabricate outstanding electrocatalysts for the HER in alkaline/alkaline seawater electrolytes.

3.
Chem Asian J ; 14(16): 2889-2897, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31290281

ABSTRACT

Three kinds of nickel-loaded anhydrous calcium silicate nanocatalysts (ACS), including Ni-ACS-Dop, Ni-ACS-Iex and Ni-ACS-Im, were prepared by introducing Ni species through doping in the synthesis of calcium silicate hydrate (CSH) nanosheets, ion-exchange with premade CSH nanosheets and deposition on calcined ACS nanosheets, respectively. Although Ni species were introduced in different ways, all the Ni-ACS catalysts showed similar chemical compositions and microstructures, where Ni nanoparticles were highly dispersed on the ultrathin ACS nanosheets with a large surface area and good thermal stability. However, the differences in the way of Ni introduction did produce Ni with different electronic states. The Ni-ACS-Iex catalyst with "surface Ni" as a dominant form had more electrons enriched on the surface of Ni, which led to the highest activity in the dry reforming of methane (DRM) reaction among the three catalysts, whereas the Ni-ACS-Dop catalyst with "lattice Ni" as a dominant form showed an electron-deficient property and lowest activity. Different from the introduction of a more favourable nanostructure or chemical component to the catalyst system, this work controlled the chemical environment of metal precursors and created metal catalysts with a preferred surface electronic state during synthesis, which could be a new strategy to improve the catalytic activity.

4.
ACS Appl Mater Interfaces ; 11(27): 24078-24087, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31194503

ABSTRACT

NixCoy/H-ZrO2 catalysts composed of highly dispersed NixCoy nanoparticles supported by mesoporous ZrO2 hollow sphere are synthesized by templating and impregnation processes. According to thermogravimetric analysis, X-ray photoelectron spectroscopy, and dry reforming results, a synergetic reaction mechanism is proposed to explain the better performance of alloy catalysts compared to Ni/H-ZrO2 or Co/H-ZrO2. In dry reforming of methane (DRM) reaction, Ni and Co act as catalysts for CH4 cracking and CO2 reduction, respectively, and the induced carbon deposits on Ni can be oxidized by the active oxygen left on Co, which regenerate the metal surface for the following reaction. Among all the alloy catalysts, the Ni0.8Co0.2/H-ZrO2 catalyst presents the highest activity and stability because the strong metal-support interaction prevents the sintering of nanocatalysts at high temperature and the hollow structure enhances the mass transportation of reactants and products. More importantly, Ni and Co can synergistically balance the speed of CH4 cracking and CO2 reduction, which effectively avoid coke accumulation/catalyst oxidation and ensure fast and stable conversion for DRM reaction.

5.
Langmuir ; 34(24): 7077-7085, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29806981

ABSTRACT

The uncalcined but highly dispersive oxide-supported metal catalyst for liquid phase reactions may suffer from the agglomeration of metal nanoparticles and the drop of metal catalyst in solution, which will decrease the activity and shorten their life in catalysis. Here, a one-pot successive polyol reaction was developed to prepare M-E xO y colloidal particles as heterogeneous nanocatalysts, which merge the controlled synthesis of metal catalysts and oxide supports, the in situ loading of catalyst, and even the mesopore amplification into a highly integrated process. Unlike the traditional surface-deposited catalysts, the noble metal nanoparticles even with a large amount of loading are internally dispersed in the mesoporous oxide particles, which show higher activity and stability in the hydrogenation of nitroaromatics compared to the isolated nanocatalysts or surface-deposited catalysts. The improved activity and stability comes from the physical confinement of metal nanoparticles and good mass transportation of substrate/product within the support particles. This work proposed a novel method to prepare highly dispersed metal catalysts, which could be potentially useful to heterogeneous catalytic reactions with high-throughput and long-life demands.

SELECTION OF CITATIONS
SEARCH DETAIL