Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2408192, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39155803

ABSTRACT

Mechanochromic light control technology that can dynamically regulate solar irradiation is recognized as one of the leading candidates for energy-saving windows. However, the lack of spectrally selective modulation ability still hinders its application for different scenarios or individual needs. Here, inspired by the generation of structure color and color change of living organisms, a simple layer-by-layer assembly approach toward large-area fabricating mechanically responsive film for visible and near-infrared multiwavelength spectral modulation smart windows is reported here. The assembled SiO2 nanoparticles and W18O49 nanowires enable the film with an optical modulation rate of up to 42.4% at the wavelength of 550 nm and 18.4% for the near-infrared region, separately, and the typical composite film under 50% stretching shows ≈41.6% modulation rate at the wavelength of 550 nm with NIR modulation rate less than 2.7%. More importantly, the introduction of the multilayer assembly structure not only optimizes the film's optical modulation but also enables the film with high stability during 100 000 stretching cycles. A cooling effect of 21.3 and 6.9 °C for the blackbody and air inside a model house in the real environmental application is achieved. This approach provides theoretical and technical support for the new mechanochromic energy-saving windows.

2.
Nano Lett ; 23(16): 7389-7396, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37498627

ABSTRACT

Structural color always shows a reversible switch between reflection and transmission states when viewed from different angles, attracting increasing attention in display applications. However, this switching between reflection and transmission states of structural color suffers from the inherent lack of autonomous regulation, which is unmanageable in the case of different application scenarios. Here, we design an intelligent two-way structural color film which can reversibly change its color when applied with an extra stimulation such as voltage, heat signal, or light. A special structural feature contains a traditional photonic crystal film of polystyrene (PS) microspheres assembled by smart windows. Remarkably, our structural color film shows a prominent polarization sensitivity, and the angle dependence of the structural color broadens the gamut of display color demonstrated by both finite element theoretical analysis and experimental observation. Prospectively, this hierarchically designed film provides a promising pathway toward next-generation multicolor displays and smart windows.

3.
Nat Commun ; 14(1): 3231, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37270627

ABSTRACT

Smart window is an attractive option for efficient heat management to minimize energy consumption and improve indoor living comfort owing to their optical properties of adjusting sunlight. To effectively improve the sunlight modulation and heat management capability of smart windows, here, we propose a co-assembly strategy to fabricate the electrochromic and thermochromic smart windows with tunable components and ordered structures for the dynamic regulation of solar radiation. Firstly, to enhance both illumination and cooling efficiency in electrochromic windows, the aspect ratio and mixed type of Au nanorods are tuned to selectively absorb the near-infrared wavelength range of 760 to 1360 nm. Furthermore, when assembled with electrochromic W18O49 nanowires in the colored state, the Au nanorods exhibit a synergistic effect, resulting in a 90% reduction of near-infrared light and a corresponding 5 °C cooling effect under 1-sun irradiation. Secondly, to extend the fixed response temperature value to a wider range of 30-50 °C in thermochromic windows, the doping amount and mixed type of W-VO2 nanowires are carefully regulated. Last but not the least, the ordered assembly structure of the nanowires can greatly reduce the level of haze and enhance visibility in the windows.

4.
Nano Lett ; 21(23): 9976-9982, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34813332

ABSTRACT

Electrochromic devices have attracted considerable interest for smart windows. However, current development suffers from the requirement of the external power sources and rigid ITO substrate, which not only causes additional energy consumption but also limits their applications in flexible devices. Inspired by galvanic cell, we demonstrate a self-powered flexible electrochromic device by integrating Ag/W18O49 nanowire film with the Al sheet. The Ag nanowire film first acted as the electrode to replace the ITO substrate, then coupled with the Al sheet to induce an open-circuit voltage of ∼0.83 V, which is high enough to drive the coloration of W18O49 nanowires. Remarkably, the flexible self-powered electrochromic device only expends ∼6.8 mg/cm2 of the Al sheet after 450 electrochromic switching cycles and the size can be easily expanded with an area of 20 × 20 cm2, offering significant potential applications for the next generation of flexible electrochromic smart window.

5.
Nano Lett ; 21(21): 9203-9209, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34677062

ABSTRACT

Assembling various nanowires together, enabling the assemblies with tailored optical, electrical, and multifunctional properties, represents a promising technology for next generation multifunctional electronics. Here we demonstrate a novel multicolor electrochromic device by coassembling W18O49 and V2O5 nanowires using solution-based Langmuir-Blodgett technique. The transparent W18O49 nanowire film became orange with the increasing addition of V2O5 nanowires and the film underwent a dynamic color change (orange, green, and gray) on application of different electrochemical biases of 2, 0, and -0.5 V (vs Ag/AgCl). Both the transmittance and color of the device can be easily controlled by manipulating the layers of coassembled nanowires and the ratios between the two nanowires. On the basis of this approach, different patterns can be easily fabricated with the addition of corresponding masks, and the solid electrochromic device is assembled, suggesting its significant potentials in smart windows and multicolor electrochromic displays.

6.
Chem Commun (Camb) ; 57(56): 6887-6890, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34151340

ABSTRACT

Ultrathin necklace-like Ag2Te nanowires with a diameter of 10 nm and a length of several micrometers are fabricated by a simple solution-based process at low temperature, and the Ag2Te nanowire films are fabricated by a Langmuir-Blodgett technique. A reversible structural phase transition of the nanowire films obtained can be observed, and in addition is also reflected by the electrical properties.

SELECTION OF CITATIONS
SEARCH DETAIL