Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Am J Hum Genet ; 110(10): 1769-1786, 2023 10 05.
Article En | MEDLINE | ID: mdl-37729906

Defects in hydroxymethylbilane synthase (HMBS) can cause acute intermittent porphyria (AIP), an acute neurological disease. Although sequencing-based diagnosis can be definitive, ∼⅓ of clinical HMBS variants are missense variants, and most clinically reported HMBS missense variants are designated as "variants of uncertain significance" (VUSs). Using saturation mutagenesis, en masse selection, and sequencing, we applied a multiplexed validated assay to both the erythroid-specific and ubiquitous isoforms of HMBS, obtaining confident functional impact scores for >84% of all possible amino acid substitutions. The resulting variant effect maps generally agreed with biochemical expectations and provide further evidence that HMBS can function as a monomer. Additionally, the maps implicated specific residues as having roles in active site dynamics, which was further supported by molecular dynamics simulations. Most importantly, these maps can help discriminate pathogenic from benign HMBS variants, proactively providing evidence even for yet-to-be-observed clinical missense variants.


Hydroxymethylbilane Synthase , Porphyria, Acute Intermittent , Humans , Hydroxymethylbilane Synthase/chemistry , Hydroxymethylbilane Synthase/genetics , Hydroxymethylbilane Synthase/metabolism , Mutation, Missense/genetics , Porphyria, Acute Intermittent/diagnosis , Porphyria, Acute Intermittent/genetics , Amino Acid Substitution , Molecular Dynamics Simulation
2.
Nat Commun ; 14(1): 2162, 2023 04 15.
Article En | MEDLINE | ID: mdl-37061542

Generating reference maps of interactome networks illuminates genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. We apply state-of-the-art methods to identify binary protein-protein interactions (PPIs) for Drosophila melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Drosophila proteins result in the 'FlyBi' dataset of 8723 PPIs among 2939 proteins. Testing subsets of data from FlyBi and previous PPI studies using an orthogonal assay allows for normalization of data quality; subsequent integration of FlyBi and previous data results in an expanded binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6511 proteins. We use FlyBi data to generate an autophagy network, then validate in vivo using autophagy-related assays. The deformed wings (dwg) gene encodes a protein that is both a regulator and a target of autophagy. Altogether, these resources provide a foundation for building new hypotheses regarding protein networks and function.


Drosophila Proteins , Protein Interaction Maps , Animals , Protein Interaction Maps/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila/genetics , Saccharomyces cerevisiae/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Protein Interaction Mapping/methods , Two-Hybrid System Techniques
3.
Nat Biotechnol ; 41(1): 140-149, 2023 01.
Article En | MEDLINE | ID: mdl-36217029

Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions. We find that host proteins genetically associated with comorbidities of severe illness and long COVID are enriched in SARS-CoV-2 targeted network communities. Evaluating contactome-derived hypotheses, we demonstrate that viral NSP14 activates nuclear factor κB (NF-κB)-dependent transcription, even in the presence of cytokine signaling. Moreover, for several tested host proteins, genetic knock-down substantially reduces viral replication. Additionally, we show for USP25 that this effect is phenocopied by the small-molecule inhibitor AZ1. Our results connect viral proteins to human genetic architecture for COVID-19 severity and offer potential therapeutic targets.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Proteome/genetics , Post-Acute COVID-19 Syndrome , Virus Replication/genetics , Ubiquitin Thiolesterase/pharmacology
4.
G3 (Bethesda) ; 10(9): 3399-3402, 2020 09 02.
Article En | MEDLINE | ID: mdl-32763951

The world is facing a global pandemic of COVID-19 caused by the SARS-CoV-2 coronavirus. Here we describe a collection of codon-optimized coding sequences for SARS-CoV-2 cloned into Gateway-compatible entry vectors, which enable rapid transfer into a variety of expression and tagging vectors. The collection is freely available. We hope that widespread availability of this SARS-CoV-2 resource will enable many subsequent molecular studies to better understand the viral life cycle and how to block it.


Betacoronavirus/genetics , Open Reading Frames/genetics , Betacoronavirus/isolation & purification , COVID-19 , Cloning, Molecular , Coronavirus Infections/pathology , Coronavirus Infections/virology , Escherichia coli/metabolism , Humans , Pandemics , Plasmids/genetics , Plasmids/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Potyvirus/genetics , SARS-CoV-2
5.
Mol Syst Biol ; 12(4): 863, 2016 Apr 22.
Article En | MEDLINE | ID: mdl-27107012

High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods.


Centrosome/metabolism , Protein Interaction Mapping/methods , Proteome/metabolism , Saccharomyces cerevisiae/genetics , Chromosomes, Human/metabolism , Gene Library , High-Throughput Nucleotide Sequencing , Humans , Protein Binding , Two-Hybrid System Techniques
6.
J Chem Phys ; 140(20): 205102, 2014 May 28.
Article En | MEDLINE | ID: mdl-24880333

The epimerization of amino acid residues increases with age in living organisms. In the present study, the structural consequences and thermodynamic functions of the epimerization of thymopentin (TP-5), the active site of the thymic hormone thymopoietin, were studied using molecular dynamics and density functional theory methods. The results show that free radical-initiated D-amino acid formation is energetically favoured (-130 kJmol(-1)) for each residue and induces significant changes to the peptide structure. In comparison to the wild-type (each residue in the L-configuration), the radius of gyration of the D-Asp(3) epimer of the peptide decreased by 0.5 Å, and disrupted the intramolecular hydrogen bonding of the native peptide. Beyond establishing important structural, energetic and thermodynamic benchmarks and reference data for the structure of TP-5, these results disseminate the understanding of molecular ageing, the epimerization of amino acid residues.


Free Radicals/chemistry , Peptides/chemistry , Thymopentin/chemistry , Amino Acids/chemistry , Hydrogen Bonding , Peptide Fragments/chemistry , Thymopentin/metabolism
...