Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Transl Med ; 16(750): eadi4125, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38838135

Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.


Interleukin-1 Receptor-Associated Kinases , Mice, Knockout , Oxidative Stress , Retinal Degeneration , Retinal Pigment Epithelium , Animals , Humans , Male , Mice , Cellular Senescence , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology
2.
Sci Rep ; 13(1): 8334, 2023 05 23.
Article En | MEDLINE | ID: mdl-37221196

We previously reported that kenpaullone, which inhibits GSK-3a/b and CDKs inhibited CCCP mediated mitochondrial depolarisation and augments the mitochondrial network. To investigate the actions of this class of drug further, we compared the ability of kenpaullone, alsterpaullone, 1-azakenapaullone, AZD5438, AT7519 (CDK and GSK-3a/b inhibitors) and dexpramipexole and olesoxime (mitochondrial permeability transition pore inhibitors) to prevent CCCP mediated mitochondrial depolarisation and found that AZD5438 and AT7519, were the most effective. Furthermore, treatment with AZD5438 alone increased the complexity of the mitochondrial network. We also found that AZD5438 prevented the rotenone induced decrease in PGC-1alpha and TOM20 levels and that it mediated powerful anti-apoptotic effects and promoted glycolytic respiration. Importantly, experiments in human iPSC derived cortical and midbrain neurons showed AZD5438 mediated significant protective effects, preventing the neuronal cell death, and collapse in the neurite and mitochondrial network associated with rotenone treatment. These results suggest drugs that target GSK-3a/b and CDKs should be developed and assessed further as they may have significant therapeutic potential.


Neurons , Rotenone , Humans , Carbonyl Cyanide m-Chlorophenyl Hydrazone , Imidazoles , Protein Kinase Inhibitors , Cyclin-Dependent Kinases
3.
Brain Pathol ; 30(6): 1041-1055, 2020 11.
Article En | MEDLINE | ID: mdl-32580238

SAFB1 is a DNA and RNA binding protein that is highly expressed in the cerebellum and hippocampus and is involved in the processing of coding and non-coding RNAs, splicing and dendritic function. We analyzed SAFB1 expression in the post-mortem brain tissue of spinocerebellar ataxia (SCA), Huntington's disease (HD), Multiple sclerosis (MS), Parkinson's disease patients and controls. In SCA cases, the expression of SAFB1 in the nucleus was increased and there was abnormal and extensive expression in the cytoplasm where it co-localized with the markers of Purkinje cell injury. Significantly, no SAFB1 expression was found in the cerebellar neurons of the dentate nucleus in control or MS patients; however, in SCA patients, SAFB1 expression was increased significantly in both the nucleus and cytoplasm of dentate neurons. In HD, we found that SAFB1 expression was increased in the nucleus and cytoplasm of striatal neurons; however, there was no SAFB1 staining in the striatal neurons of controls. In PD substantia nigra, we did not see any changes in neuronal SAFB1 expression. iCLIP analysis found that SAFB1 crosslink sites within ATXN1 RNA were adjacent to the start and within the glutamine repeat sequence. Further investigation found increased binding of SAFB1 to pathogenic ATXN1-85Q mRNA. These novel data strongly suggest SAFB1 contributes to the etiology of SCA and Huntington's chorea and that it may be a pathological marker of polyglutamine repeat expansion diseases.


Brain/metabolism , Huntington Disease/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Neurons/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Receptors, Estrogen/metabolism , Spinocerebellar Ataxias/metabolism , Aged , Aged, 80 and over , Brain/pathology , Cerebellum/metabolism , Cerebellum/pathology , Corpus Striatum/metabolism , Corpus Striatum/pathology , Female , Humans , Huntington Disease/pathology , Male , Middle Aged , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Purkinje Cells/metabolism , Purkinje Cells/pathology , Spinocerebellar Ataxias/pathology
5.
J Biol Chem ; 295(10): 3285-3300, 2020 03 06.
Article En | MEDLINE | ID: mdl-31911436

Genetic and biochemical evidence points to an association between mitochondrial dysfunction and Parkinson's disease (PD). PD-associated mutations in several genes have been identified and include those encoding PTEN-induced putative kinase 1 (PINK1) and parkin. To identify genes, pathways, and pharmacological targets that modulate the clearance of damaged or old mitochondria (mitophagy), here we developed a high-content imaging-based assay of parkin recruitment to mitochondria and screened both a druggable genome-wide siRNA library and a small neuroactive compound library. We used a multiparameter principal component analysis and an unbiased parameter-agnostic machine-learning approach to analyze the siRNA-based screening data. The hits identified in this analysis included specific genes of the ubiquitin proteasome system, and inhibition of ubiquitin-conjugating enzyme 2 N (UBE2N) with a specific antagonist, Bay 11-7082, indicated that UBE2N modulates parkin recruitment and downstream events in the mitophagy pathway. Screening of the compound library identified kenpaullone, an inhibitor of cyclin-dependent kinases and glycogen synthase kinase 3, as a modulator of parkin recruitment. Validation studies revealed that kenpaullone augments the mitochondrial network and protects against the complex I inhibitor MPP+. Finally, we used a microfluidics platform to assess the timing of parkin recruitment to depolarized mitochondria and its modulation by kenpaullone in real time and with single-cell resolution. We demonstrate that the high-content imaging-based assay presented here is suitable for both genetic and pharmacological screening approaches, and we also provide evidence that pharmacological compounds modulate PINK1-dependent parkin recruitment.


Mitochondria/metabolism , RNA, Small Interfering/metabolism , Small Molecule Libraries/metabolism , Ubiquitin-Protein Ligases/metabolism , Benzazepines/chemistry , Benzazepines/metabolism , Benzazepines/pharmacology , HeLa Cells , Humans , Hydrazones/chemistry , Hydrazones/metabolism , Hydrazones/pharmacology , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mitophagy/drug effects , Principal Component Analysis , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/metabolism , RNA Interference , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics
...