Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 658, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811770

ABSTRACT

The cytoskeleton is a complex network of interconnected biopolymers consisting of actin filaments, microtubules, and intermediate filaments. These biopolymers work in concert to transmit cell-generated forces to the extracellular matrix required for cell motility, wound healing, and tissue maintenance. While we know cell-generated forces are driven by actomyosin contractility and balanced by microtubule network resistance, the effect of intermediate filaments on cellular forces is unclear. Using a combination of theoretical modeling and experiments, we show that vimentin intermediate filaments tune cell stress by assisting in both actomyosin-based force transmission and reinforcement of microtubule networks under compression. We show that the competition between these two opposing effects of vimentin is regulated by the microenvironment stiffness. These results reconcile seemingly contradictory results in the literature and provide a unified description of vimentin's effects on the transmission of cell contractile forces to the extracellular matrix.


Subject(s)
Actomyosin , Mechanotransduction, Cellular , Microtubules , Vimentin , Microtubules/metabolism , Actomyosin/metabolism , Vimentin/metabolism , Humans , Extracellular Matrix/metabolism , Animals
2.
PNAS Nexus ; 2(8): pgad237, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37680491

ABSTRACT

The ability of cells to sense and adapt to curvy topographical features has been implicated in organ morphogenesis, tissue repair, and tumor metastasis. However, how individual cells or multicellular assemblies sense and differentiate curvatures remains elusive. Here, we reveal a curvature sensing mechanism in which surface tension can selectively activate either actin or integrin flows, leading to bifurcating cell migration modes: focal adhesion formation that enables cell crawling at convex front edges and actin cable assembly that pulls cells forward at concave front edges. The molecular flows and curved front morphogenesis are sustained by coordinated cellular tension generation and transmission. We track the molecular flows and mechanical force transduction pathways by a phase-field model, which predicts that multicellular curvature sensing is more efficient than individual cells, suggesting collective intelligence of cells. The unique ability of cells in curvature sensing and migration mode bifurcating may offer insights into emergent collective patterns and functions of living active systems at different length scales.

3.
J Biol Chem ; 299(8): 104963, 2023 08.
Article in English | MEDLINE | ID: mdl-37356720

ABSTRACT

Vimentin intermediate filaments form part of the cytoskeleton of mesenchymal cells, but under pathological conditions often associated with inflammation, vimentin filaments depolymerize as the result of phosphorylation or citrullination, and vimentin oligomers are secreted or released into the extracellular environment. In the extracellular space, vimentin can bind surfaces of cells and the extracellular matrix, and the interaction between extracellular vimentin and cells can trigger changes in cellular functions, such as activation of fibroblasts to a fibrotic phenotype. The mechanism by which extracellular vimentin binds external cell membranes and whether vimentin alone can act as an adhesive anchor for cells is largely uncharacterized. Here, we show that various cell types (normal and vimentin null fibroblasts, mesenchymal stem cells, and A549 lung carcinoma cells) attach to and spread on polyacrylamide hydrogel substrates covalently linked to vimentin. Using traction force microscopy and spheroid expansion assays, we characterize how different cell types respond to extracellular vimentin. Cell attachment to and spreading on vimentin-coated surfaces is inhibited by hyaluronic acid degrading enzymes, hyaluronic acid synthase inhibitors, soluble heparin or N-acetyl glucosamine, all of which are treatments that have little or no effect on the same cell types binding to collagen-coated hydrogels. These studies highlight the effectiveness of substrate-bound vimentin as a ligand for cells and suggest that carbohydrate structures, including the glycocalyx and glycosylated cell surface proteins that contain N-acetyl glucosamine, form a novel class of adhesion receptors for extracellular vimentin that can either directly support cell adhesion to a substrate or fine-tune the glycocalyx adhesive properties.


Subject(s)
Vimentin , Acetylglucosamine/chemistry , Cell Adhesion , Cell Movement , Hyaluronic Acid/chemistry , Intermediate Filaments/metabolism , Vimentin/metabolism , Humans , Cell Line, Tumor
4.
Macromol Biosci ; 23(9): e2300042, 2023 09.
Article in English | MEDLINE | ID: mdl-37128976

ABSTRACT

The rigidity of a cell's substrate or extracellular matrix plays a vital role in regulating cell and tissue functions. Polyacrylamide (PAAm) hydrogels are one of the most widely used cell culture substrates that provide a physiologically relevant range of stiffness. However, it is still arduous and time-consuming to prepare PAAm substrates in large batches for high-yield or multiscale cell cultures. In this communication, a simple method to prepare PAAm hydrogels with less time cost and easily accessible materials is presented. The hydrogel is mechanically uniform and supports cell culture in a large batch. It is further shown that the stiffness of the hydrogel covers a large range of Young's modulus and is sensed by cells, regulating various cell features including changes in cell morphology, proliferation, and contractility. This method improves the reproducibility of mechanobiology studies and can be easily applied for mechanobiology research requiring large numbers of cells or experimental groups.


Subject(s)
Cell Culture Techniques , Hydrogels , Reproducibility of Results , Cell Culture Techniques/methods , Biophysics
5.
Proc Natl Acad Sci U S A ; 117(52): 33263-33271, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318201

ABSTRACT

Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps.


Subject(s)
Actins/metabolism , Wound Healing , Animals , Biomechanical Phenomena , Cell Adhesion , Cell Proliferation , Cell Shape , Dogs , Imaging, Three-Dimensional , Kinetics , Madin Darby Canine Kidney Cells , Microscopy, Atomic Force , Models, Biological , Time Factors
6.
Soft Matter ; 15(36): 7203-7210, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31475279

ABSTRACT

Cancer metastasis has been believed as a genetically programmed process that is commonly marked by biochemical signals. Here using extracellular matrix control of cellular mechanics, we establish that cellular force threshold can also mark in vitro metastatic phenotypic change and malignant transformation in HCT-8 cell colonies. We observe that for prolonged culture time the HCT-8 cell colonies disperse into individual malignant cells, and the metastatic-like dispersion depends on both cell-seeding gel stiffness and colony size. Cellular force microscopies show that gel stiffness and colony size are also two key parameters that modulate cellular forces, suggesting the correlations between the cellular forces and the metastatic phenotypic change. Using our recently developed biophysical model, we construct an extracellular traction phase diagram in the stiffness-size space, filled with experimental data on the colony behavior. From the phase diagram we identify a phase boundary as a traction force threshold above which the metastatic phenotypic transition occurs and below which the cell colonies remain cohesive. Our finding suggests that the traction threshold can be regarded as an effective mechano-marker for the onset of the metastatic-like dispersion and malignant transformation.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Epithelial Cells/metabolism , Cell Adhesion , Cell Line, Tumor , Colon/cytology , Extracellular Matrix/metabolism , Humans , Mechanotransduction, Cellular , Models, Biological , Phenotype , Stress, Mechanical
7.
Chem Sci ; 8(11): 7306-7311, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29163881

ABSTRACT

A variety of hydrogels have been synthesized for controlling the release of signaling molecules in applications such as drug delivery and regenerative medicine. However, it remains challenging to synthesize hydrogels with the ability to control the release of signaling molecules sequentially or periodically under physiological conditions as living cells do in response to the variation of metabolism. The purpose of this work was to study a novel biomimetic hydrogel system with the ability of recapitulating the procedure of cellular signal transduction and controlling the sequential release of signaling molecules under physiological conditions. In the presence of a small chemical, the signaling molecule is regulated to change from a DNA-bound state to a free state and the freed signaling molecule is able to regulate intracellular signal transduction and cell migration. Moreover, periodic exposure of the hydrogel system to the small chemical leads to sequential protein release. Since signaling molecules are important for every activity of the cell, this hydrogel system holds potential as a metabolism-responsive platform for controlled release of signaling molecules and cell regulation in various applications.

8.
Angew Chem Int Ed Engl ; 55(23): 6657-61, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27100911

ABSTRACT

Natural polymers are synthesized and decomposed under physiological conditions. However, it is challenging to develop synthetic polymers whose formation and reversibility can be both controlled under physiological conditions. Here we show that both linear and branched DNA polymers can be synthesized via molecular hybridization in aqueous solutions, on the particle surface, and in the extracellular matrix (ECM) without the involvement of any harsh conditions. More importantly, these polymers can be effectively reversed to dissociate under the control of molecular triggers. Since nucleic acids can be conjugated with various molecules or materials, we anticipate that molecularly regulated reversible DNA polymerization holds potential for broad biological and biomedical applications.


Subject(s)
Biocompatible Materials/chemistry , DNA/chemistry , Electrophoresis, Agar Gel , Extracellular Matrix/metabolism , Microscopy, Atomic Force , Microscopy, Confocal , Polymerization
9.
Biochem Biophys Res Commun ; 443(3): 888-93, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24380862

ABSTRACT

Fluo-3 is widely used to study cell calcium. Two traditional approaches: (1) direct injection and (2) Fluo-3 acetoxymethyl ester (AM) loading, often bring conflicting results in cytoplasmic calcium ([Ca(2+)]c) and nuclear calcium ([Ca(2+)]n) imaging. AM loading usually yields a darker nucleus than in cytoplasm, while direct injection always induces a brighter nucleus which is more responsive to [Ca(2+)]n detection. In this work, we detailedly investigated the effects of loading and de-esterification temperatures on the fluorescence intensity of Fluo-3 in response to [Ca(2+)]n and [Ca(2+)]c in adherent cells, including osteoblast, HeLa and BV2 cells. Interestingly, it showed that fluorescence intensity of nucleus in osteoblast cells was about two times larger than that of cytoplasm when cells were loaded with Fluo-3 AM at 4 °C and allowed a subsequent step for de-esterification at 20 °C. Brighter nuclei were also acquired in HeLa and BV2 cells using the same experimental condition. Furthermore, loading time and adhesion quality of cells had effect on fluorescence intensity. Taken together, cold loading and room temperature de-esterification treatment of Fluo-3 AM selectively yielded brighter nucleus in adherent cells.


Subject(s)
Aniline Compounds/metabolism , Cell Nucleus/metabolism , Staining and Labeling , Temperature , Xanthenes/metabolism , Animals , Cell Adhesion , Esterification , Fluorescence , HeLa Cells , Humans , Mice , Models, Biological , Osteoblasts/cytology , Osteoblasts/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...