Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Med ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39163858

ABSTRACT

BACKGROUND: Fish oil (FO), a mixture of omega-3 fatty acids mainly comprising docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), has been recommended for patients with type 2 diabetes (T2D) and hypertriglyceridemia. However, its effects on lipidomic profiles and gut microbiota and the factors influencing triglyceride (TG) reduction remain unclear. METHODS: We conducted a 12-week, randomized, double-blind, placebo-controlled trial in 309 Chinese patients with T2D with hypertriglyceridemia (ClinicalTrials.gov: NCT03120299). Participants were randomly assigned (1:1) to receive either 4 g FO or corn oil for 12 weeks. The primary outcome was changes in serum TGs and the lipidomic profile, and the secondary outcome included changes in the gut microbiome and other metabolic variables. FINDINGS: The FO group had significantly better TG reduction (mean [95% confidence interval (CI)]: -1.51 [-2.01, -1.01] mmol/L) compared to the corn oil group (-0.66 [-1.15, -0.16] mmol/L, p = 0.02). FO significantly altered the serum lipid profile by reducing low-unsaturated TG species and increasing those containing DHA or EPA. FO had minor effects on gut microbiota, while baseline microbial features predicted the TG response to FO better than phenotypic or lipidomic features, potentially mediated by specific lipid metabolites. A total of 9 lipid metabolites significantly mediated the link between 4 baseline microbial variables and the TG response to FO supplementation. CONCLUSIONS: Our findings demonstrate differential impacts of omega-3 fatty acids on lipidomic and microbial profiles in T2D and highlight the importance of baseline gut microbiota characteristics in predicting the TG-lowering efficacy of FO. FUNDING: This study was funded by the National Nature Science Foundation.

2.
Cell Host Microbe ; 32(8): 1301-1314.e9, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38996548

ABSTRACT

Numerous studies have reported critical roles for the gut microbiota in obesity. However, the specific microbes that causally contribute to obesity and the underlying mechanisms remain undetermined. Here, we conducted shotgun metagenomic sequencing in a Chinese cohort of 631 obese subjects and 374 normal-weight controls and identified a Megamonas-dominated, enterotype-like cluster enriched in obese subjects. Among this cohort, the presence of Megamonas and polygenic risk exhibited an additive impact on obesity. Megamonas rupellensis possessed genes for myo-inositol degradation, as demonstrated in vitro and in vivo, and the addition of myo-inositol effectively inhibited fatty acid absorption in intestinal organoids. Furthermore, mice colonized with M. rupellensis or E. coli heterologously expressing the myo-inositol-degrading iolG gene exhibited enhanced intestinal lipid absorption, thereby leading to obesity. Altogether, our findings uncover roles for M. rupellensis as a myo-inositol degrader that enhances lipid absorption and obesity, suggesting potential strategies for future obesity management.


Subject(s)
Gastrointestinal Microbiome , Inositol , Obesity , Inositol/metabolism , Obesity/microbiology , Obesity/metabolism , Animals , Humans , Mice , Male , Lipid Metabolism , Female , Intestinal Absorption , Mice, Inbred C57BL , Metagenomics , Middle Aged , Adult , Fatty Acids/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
3.
Nat Med ; 30(6): 1722-1731, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844795

ABSTRACT

Insight into associations between the gut microbiome with metabolism and aging is crucial for tailoring interventions to promote healthy longevity. In a discovery cohort of 10,207 individuals aged 40-93 years, we used 21 metabolic parameters to classify individuals into five clusters, termed metabolic multimorbidity clusters (MCs), that represent different metabolic subphenotypes. Compared to the cluster classified as metabolically healthy (MC1), clusters classified as 'obesity-related mixed' (MC4) and 'hyperglycemia' (MC5) exhibited an increased 11.1-year cardiovascular disease (CVD) risk by 75% (multivariable-adjusted hazard ratio (HR): 1.75, 95% confidence interval (CI): 1.43-2.14) and by 117% (2.17, 1.72-2.74), respectively. These associations were replicated in a second cohort of 9,061 individuals with a 10.0-year follow-up. Based on analysis of 4,491 shotgun fecal metagenomes from the discovery cohort, we found that gut microbial composition was associated with both MCs and age. Next, using 55 age-specific microbial species to capture biological age, we developed a gut microbial age (MA) metric, which was validated in four external cohorts comprising 4,425 metagenomic samples. Among individuals aged 60 years or older, the increased CVD risk associated with MC4 or MC5, as compared to MC1, MC2 or MC3, was exacerbated in individuals with high MA but diminished in individuals with low MA, independent of age, sex and other lifestyle and dietary factors. This pattern, in which younger MA appears to counteract the CVD risk attributable to metabolic dysfunction, implies a modulating role of MA in cardiovascular health for metabolically unhealthy older people.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Humans , Middle Aged , Aged , Cardiovascular Diseases/microbiology , Cardiovascular Diseases/epidemiology , Female , Male , Adult , Aged, 80 and over , Aging , Risk Factors , Feces/microbiology , Cohort Studies , Age Factors , Metagenome
4.
Imeta ; 3(2): e179, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882498

ABSTRACT

The administration of oral antidiabetic drugs (OADs) to patients with type 2 diabetes elicits distinct and shared changes in the gut microbiota, with acarbose and berberine exhibiting greater impacts on the gut microbiota than metformin, vildagliptin, and glipizide. The baseline gut microbiota strongly associates with treatment responses of OADs.

5.
J Clin Endocrinol Metab ; 109(6): 1474-1484, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38157274

ABSTRACT

CONTEXT: Cushing syndrome (CS) is a severe endocrine disease characterized by excessive secretion of cortisol with multiple metabolic disorders. While gut microbial dysbiosis plays a vital role in metabolic disorders, the role of gut microbiota in CS remains unclear. OBJECTIVE: The objective of this work is to examine the alteration of gut microbiota in patients with CS. METHODS: We performed shotgun metagenomic sequencing of fecal samples from 78 patients with CS and 78 healthy controls matched for age and body mass index. Furthermore, we verify the cortisol degradation capacity of Ruminococcus gnavus in vitro and identify the potential metabolite by LC-MC/MS. RESULTS: We observed significant differences in microbial composition between CS and controls in both sexes, with CS showing reduced Bacteroidetes (Bacteroides vulgatus) and elevated Firmicutes (Erysipelotrichaceae_bacterium_6_1_45) and Proteobacteria (Enterobacter cloacae). Despite distinct causes of hypercortisolism in ACTH-dependent and ACTH-independent CS, we found no significant differences in metabolic profiles or gut microbiota between the 2 subgroups. Furthermore, we identified a group of gut species, including R. gnavus, that were positively correlated with cortisol levels in CS. These bacteria were found to harbor cortisol-degrading desAB genes and were consistently enriched in CS. Moreover, we demonstrated the efficient capacity of R. gnavus to degrade cortisol to 11-oxygenated androgens in vitro. CONCLUSION: This study provides evidence of gut microbial dysbiosis in patients with CS and identifies a group of CS-enriched bacteria capable of degrading cortisol. These findings highlight the potential role of gut microbiota in regulating host steroid hormone levels, and consequently host health.


Subject(s)
Cushing Syndrome , Dysbiosis , Feces , Gastrointestinal Microbiome , Hydrocortisone , Humans , Dysbiosis/microbiology , Dysbiosis/metabolism , Male , Female , Gastrointestinal Microbiome/physiology , Cushing Syndrome/microbiology , Cushing Syndrome/metabolism , Hydrocortisone/metabolism , Middle Aged , Adult , Feces/microbiology , Case-Control Studies , Clostridiales/isolation & purification , Clostridiales/metabolism
6.
Diabetologia ; 65(10): 1613-1626, 2022 10.
Article in English | MEDLINE | ID: mdl-35930018

ABSTRACT

AIMS/HYPOTHESIS: The use of oral glucose-lowering drugs, particularly those designed to target the gut ecosystem, is often observed in association with altered gut microbial composition or functional capacity in individuals with type 2 diabetes. The gut microbiota, in turn, plays crucial roles in the modulation of drug efficacy. We aimed to assess the impacts of acarbose and vildagliptin on human gut microbiota and the relationships between pre-treatment gut microbiota and therapeutic responses. METHODS: This was a randomised, open-labelled, two-arm trial in treatment-naive type 2 diabetes patients conducted in Beijing between December 2016 and December 2017. One hundred participants with overweight/obesity and newly diagnosed type 2 diabetes were recruited from the Pinggu Hospital and randomly assigned to the acarbose (n=50) or vildagliptin (n=50) group using sealed envelopes. The treatment period was 6 months. Blood, faecal samples and visceral fat data from computed tomography images were collected before and after treatments to measure therapeutic outcomes and gut microbiota. Metagenomic datasets from a previous type 2 diabetes cohort receiving acarbose or glipizide for 3 months were downloaded and processed. Statistical analyses were applied to identify the treatment-related changes in clinical variables, gut microbiota and associations. RESULTS: Ninety-two participants were analysed. After 6 months of acarbose (n=44) or vildagliptin (n=48) monotherapy, both groups achieved significant reductions in HbA1c (from 60 to 46 mmol/mol [from 7.65% to 6.40%] in the acarbose group and from 59 to 44 mmol/mol [from 7.55% to 6.20%] in the vildagliptin group) and visceral fat areas (all adjusted p values for pre-post comparisons <0.05). Both arms showed drug-specific and shared changes in relative abundances of multiple gut microbial species and pathways, especially the common reductions in Bacteroidetes species. Three months and 6 months of acarbose-induced changes in microbial composition were highly similar in type 2 diabetes patients from the two independent studies. Vildagliptin treatment significantly enhanced fasting active glucagon-like peptide-1 (GLP-1) levels. Baseline gut microbiota, rather than baseline GLP-1 levels, were strongly associated with GLP-1 response to vildagliptin, and to a lesser extent with GLP-1 response to acarbose. CONCLUSIONS/INTERPRETATION: This study reveals common microbial responses in type 2 diabetes patients treated with two glucose-lowering drugs targeting the gut differently and acceptable performance of baseline gut microbiota in classifying individuals with different GLP-1 responses to vildagliptin. Our findings highlight bidirectional interactions between gut microbiota and glucose-lowering drugs. TRIAL REGISTRATION: ClinicalTrials.gov NCT02999841 FUNDING: National Key Research and Development Project: 2016YFC1304901.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Acarbose/therapeutic use , Blood Glucose/metabolism , China , Ecosystem , Gastrointestinal Tract/metabolism , Glipizide/therapeutic use , Glucagon-Like Peptide 1/therapeutic use , Glucose , Humans , Hypoglycemic Agents/pharmacology , Research , Vildagliptin/therapeutic use
7.
Gut Microbes ; 14(1): 2003176, 2022.
Article in English | MEDLINE | ID: mdl-34923903

ABSTRACT

Non-fasting lipidemia (nFL), mainly contributed by postprandial lipidemia (PL), has recently been recognized as an important cardiovascular disease (CVD) risk as fasting lipidemia (FL). PL serves as a common feature of dyslipidemia in Type 2 Diabetes (T2D), albeit effective therapies targeting on PL were limited. In this study, we aimed to evaluate whether the therapy combining probiotics (Prob) and berberine (BBR), a proven antidiabetic and hypolipidemic regimen via altering gut microbiome, could effectively reduce PL in T2D and to explore the underlying mechanism. Blood PL (120 min after taking 100 g standard carbohydrate meal) was examined in 365 participants with T2D from the Probiotics and BBR on the Efficacy and Change of Gut Microbiota in Patients with Newly Diagnosed Type 2 Diabetes (PREMOTE study), a random, placebo-controlled, and multicenter clinical trial. Prob+BBR was superior to BBR or Prob alone in improving postprandial total cholesterol (pTC) and low-density lipoprotein cholesterol (pLDLc) levels with decrement of multiple species of postprandial lipidomic metabolites after 3 months follow-up. This effect was linked to the changes of fecal Bifidobacterium breve level responding to BBR alone or Prob+BBR treatment. Four fadD genes encoding long-chain acyl-CoA synthetase were identified in the genome of this B. breve strain, and transcriptionally activated by BBR. In vitro BBR treatment further decreased the concentration of FFA in the culture medium of B. breve compared to vehicle. Thus, the activation of fadD by BBR could enhance FFA import and mobilization in B. breve and diliminish the intraluminal lipids for absorption to mediate the effect of Prob+BBR on PL. Our study confirmed that BBR and Prob (B. breve) could exert a synergistic hypolipidemic effect on PL, acting as a gut lipid sink to achieve better lipidemia and CVD risk control in T2D.


Subject(s)
Berberine/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Hyperlipidemias/drug therapy , Probiotics/administration & dosage , Adult , Animals , Cholesterol/blood , Cholesterol, LDL/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/microbiology , Double-Blind Method , Drug Therapy, Combination , Feces/microbiology , Female , Gastrointestinal Microbiome/drug effects , Humans , Hyperlipidemias/blood , Hyperlipidemias/microbiology , Male , Middle Aged , Postprandial Period/drug effects
8.
Cell Discov ; 7(1): 23, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33850111

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus disease 2019 (COVID-19). However, the microbial composition of the respiratory tract and other infected tissues as well as their possible pathogenic contributions to varying degrees of disease severity in COVID-19 patients remain unclear. Between 27 January and 26 February 2020, serial clinical specimens (sputum, nasal and throat swab, anal swab and feces) were collected from a cohort of hospitalized COVID-19 patients, including 8 mildly and 15 severely ill patients in Guangdong province, China. Total RNA was extracted and ultra-deep metatranscriptomic sequencing was performed in combination with laboratory diagnostic assays. We identified distinct signatures of microbial dysbiosis among severely ill COVID-19 patients on broad spectrum antimicrobial therapy. Co-detection of other human respiratory viruses (including human alphaherpesvirus 1, rhinovirus B, and human orthopneumovirus) was demonstrated in 30.8% (4/13) of the severely ill patients, but not in any of the mildly affected patients. Notably, the predominant respiratory microbial taxa of severely ill patients were Burkholderia cepacia complex (BCC), Staphylococcus epidermidis, or Mycoplasma spp. (including M. hominis and M. orale). The presence of the former two bacterial taxa was also confirmed by clinical cultures of respiratory specimens (expectorated sputum or nasal secretions) in 23.1% (3/13) of the severe cases. Finally, a time-dependent, secondary infection of B. cenocepacia with expressions of multiple virulence genes was demonstrated in one severely ill patient, which might accelerate his disease deterioration and death occurring one month after ICU admission. Our findings point to SARS-CoV-2-related microbial dysbiosis and various antibiotic-resistant respiratory microbes/pathogens in hospitalized COVID-19 patients in relation to disease severity. Detection and tracking strategies are needed to prevent the spread of antimicrobial resistance, improve the treatment regimen and clinical outcomes of hospitalized, severely ill COVID-19 patients.

9.
Nat Aging ; 1(1): 87-100, 2021 01.
Article in English | MEDLINE | ID: mdl-37118004

ABSTRACT

Lifelong sex- and age-related trajectories of the human gut microbiota remain largely unexplored. Using metagenomics, we derived the gut microbial composition of 2,338 adults (26-76 years) from a Han Chinese population-based cohort where metabolic health, hormone levels and aspects of their lifestyles were also recorded. In this cohort, and in three independent cohorts distributed across China, Israel and the Netherlands, we observed sex differences in the gut microbial composition and a shared age-related decrease in sex-dependent differences in gut microbiota. Compared to men, the gut microbiota of premenopausal women exhibited higher microbial diversity and higher abundances of multiple species known to have beneficial effects on host metabolism. We also found consistent sex-independent, age-related gut microbial characteristics across all populations, with the presence of members of the oral microbiota being the strongest indicator of older chronological age. Our findings highlight the existence of sex- and age-related trajectories in the human gut microbiota that are shared between populations of different ethnicities and emphasize the pivotal links between sex hormones, gut microbiota and host metabolism.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Female , Adult , Male , Gastrointestinal Microbiome/genetics , Feces , Ethnicity , Metagenomics
10.
J Colloid Interface Sci ; 587: 633-643, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33220950

ABSTRACT

The development of recyclable photocatalysts with broad-spectral photoresponse has drawn much attention for the practical application in flowing wastewater treatment. Herein, we have reported the construction of BiOBr/Ag/AgBr junctions on carbon fiber cloth (CFC) as broad-spectral-response filter-membrane-shaped photocatalyst that is efficient and easily recyclable. With CFC as the substrate, BiOBr nanosheets (diameter: 0.5-1 µm) were firstly synthesized by a hydrothermal method, and then Ag/AgBr nanoparticles (size: 100-300 nm) were prepared on the surface of CFC/BiOBr by using a chemical bath deposition route. CFC/BiOBr/Ag/AgBr presents superior flexibility and wide UV-Vis-NIR photoabsorption (from 200 to 1000 nm). Under visible light irradiation, CFC/BiOBr/Ag/AgBr (area: 4 × 4 cm2) can remove 99.8% rhodamine B (RhB), 99.0% acid orange 7 (AO7), and 93.0% tetracycline (TC) after 120 min, better than CFC/BiOBr (95.4% RhB, 55.0% AO7 and 91.2% TC). Interestingly, when CFC/BiOBr/Ag/AgBr is served as a filter-membrane in a photoreactor to purify the flowing sewage (RhB, rate: ~1.5 L h-1), the degradation rate of RhB goes up to 90.0% after ten filtering grades. Therefore, CFC/BiOBr/Ag/AgBr has great potential to purify the flowing wastewater as a novel filter-membrane-shaped photocatalyst.

SELECTION OF CITATIONS
SEARCH DETAIL