Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Vaccines ; 8(1): 13, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36781879

ABSTRACT

Despite the success of existing COVID-19 vaccine platforms, the persistent limitations in global deployment of vaccines and waning immunity exhibited by many of the currently deployed vaccine platforms have led to perpetual outbreaks of SARS-CoV-2 variants of concern. Thus, there is an urgent need to develop new durable vaccine candidates, to expand the global vaccine pipeline, and provide safe and effective solutions for every country worldwide. Here we deeply profiled the functional humoral response induced by two doses of AS03-adjuvanted and non-adjuvanted plant-derived Coronavirus-like particle (CoVLP) vaccine candidate from the phase 1 clinical trial, at peak immunogenicity and six months post-vaccination. AS03-adjuvanted CoVLP induced robust and durable SARS-CoV-2 specific humoral immunity, marked by strong IgG1antibody responses, potent FcγR binding, and antibody effector function. Contrary to a decline in neutralizing antibody titers, the FcγR2A-receptor binding capacity and antibody-mediated effector functions, such as opsonophagocytosis, remained readily detectable for at least six months.

2.
Sci Rep ; 12(1): 14937, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056073

ABSTRACT

Preterm newborns are more likely to suffer from infectious diseases at birth compared to children delivered at term. Whether this is due to compromised cellular, humoral, or organ-specific development remains unclear. To begin to define whether maternal-fetal antibody transfer profiles differ across preterm (PT) and fullterm (FT) infants, the overall quantity and functional quality of an array of 24 vaccine-, endemic pathogen-, and common antigen-specific antibodies were assessed across a cohort of 11 PT and 12 term-delivered maternal:infant pairs from birth through week 12. While total IgG levels to influenza, pneumo, measles, rubella, EBV, and RSV were higher in FT newborns, selective Fc-receptor binding antibodies was noted in PT newborns. In fact, near equivalent antibody-effector functions were observed across PT and FT infants, despite significant quantitative differences in transferred antibody levels. Moreover, temporal transfer analysis revealed the selective early transfer of FcRn, FcγR2, and FcγR3 binding antibodies, pointing to differential placental sieving mechanisms across gestation. These data point to selectivity in placental transfer at distinct gestational ages, to ensure that children are endowed with the most robust humoral immunity even if born preterm.


Subject(s)
Infant, Premature , Rubella , Antibodies, Viral/metabolism , Child , Female , Gestational Age , Humans , Immunoglobulin G/metabolism , Infant , Infant, Newborn , Placenta/metabolism , Pregnancy
3.
PLoS Pathog ; 18(9): e1010738, 2022 09.
Article in English | MEDLINE | ID: mdl-36067220

ABSTRACT

While Epstein-Barr virus causes mostly asymptomatic infection, associated malignancies, and autoimmune and lymphoproliferative diseases occur. To dissect the evolution of humoral immune responses over the course of EBV infection and to gain a better understanding of the potential contribution of antibody (Ab) function to viral control, we comprehensively profiled Ab specificities and Fc-functionalities using systems serology and VirScan. Ab functions against latent (EBNA1), early (p47/54) and two late (gp350/220 and VCA-p18) EBV proteins were overall modest and/or short-lived, differing from humoral responses induced during acute infection by other viruses such as HIV. In the first year post infection, only p18 elicited robust IgM-driven complement deposition and IgG-driven neutrophil phagocytosis while responses against EBNA-1 were largely Fc-functionally silent and only matured during chronic infection to drive phagocytosis. In contrast, Abs against Influenza virus readily mediated broad Fc-activity in all participants. These data suggest that EBV evades the induction of robust Fc-functional Abs, potentially due to the virus' life cycle, switching from lytic to latent stages during infection.


Subject(s)
Epstein-Barr Virus Infections , Antibodies, Viral , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Humans , Immunoglobulin G , Immunoglobulin M
4.
Immunity ; 55(2): 355-365.e4, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35090580

ABSTRACT

SARS-CoV-2 mRNA vaccines confer robust protection against COVID-19, but the emergence of variants has generated concerns regarding the protective efficacy of the currently approved vaccines, which lose neutralizing potency against some variants. Emerging data suggest that antibody functions beyond neutralization may contribute to protection from the disease, but little is known about SARS-CoV-2 antibody effector functions. Here, we profiled the binding and functional capacity of convalescent antibodies and Moderna mRNA-1273 COVID-19 vaccine-induced antibodies across SARS-CoV-2 variants of concern (VOCs). Although the neutralizing responses to VOCs decreased in both groups, the Fc-mediated responses were distinct. In convalescent individuals, although antibodies exhibited robust binding to VOCs, they showed compromised interactions with Fc-receptors. Conversely, vaccine-induced antibodies also bound robustly to VOCs but continued to interact with Fc-receptors and mediate antibody effector functions. These data point to a resilience in the mRNA-vaccine-induced humoral immune response that may continue to offer protection from SARS-CoV-2 VOCs independent of neutralization.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Viral/immunology , COVID-19/metabolism , COVID-19/prevention & control , Receptors, Fc/metabolism , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adult , Antibodies, Neutralizing/immunology , Cross Reactions/immunology , Female , Host-Pathogen Interactions , Humans , Male , Middle Aged , Neutralization Tests , Protein Binding , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
5.
Nat Commun ; 12(1): 3587, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34117252

ABSTRACT

There is a great need for the development of vaccines that induce potent and long-lasting protective immunity against SARS-CoV-2. Multimeric display of the antigen combined with potent adjuvant can enhance the potency and longevity of the antibody response. The receptor binding domain (RBD) of the spike protein is a primary target of neutralizing antibodies. Here, we developed a trimeric form of the RBD and show that it induces a potent neutralizing antibody response against live virus with diverse effector functions and provides protection against SARS-CoV-2 challenge in mice and rhesus macaques. The trimeric form induces higher neutralizing antibody titer compared to monomer with as low as 1µg antigen dose. In mice, adjuvanting the protein with a TLR7/8 agonist formulation alum-3M-052 induces 100-fold higher neutralizing antibody titer and superior protection from infection compared to alum. SARS-CoV-2 infection causes significant loss of innate cells and pathology in the lung, and vaccination protects from changes in innate cells and lung pathology. These results demonstrate RBD trimer protein as a suitable candidate for vaccine against SARS-CoV-2.


Subject(s)
Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Heterocyclic Compounds, 3-Ring/administration & dosage , Stearic Acids/administration & dosage , Alum Compounds/administration & dosage , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Heterocyclic Compounds, 3-Ring/immunology , Humans , Macaca mulatta , Mice , Protein Binding , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Stearic Acids/immunology
6.
Nat Commun ; 12(1): 1474, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674572

ABSTRACT

The establishment of a long-lived viral reservoir is the key obstacle for achieving an HIV-1 cure. However, the anatomic, virologic, and immunologic features of the viral reservoir in tissues during antiretroviral therapy (ART) remain poorly understood. Here we present a comprehensive necroscopic analysis of the SIV/SHIV viral reservoir in multiple lymphoid and non-lymphoid tissues from SIV/SHIV-infected rhesus macaques suppressed with ART for one year. Viral DNA is observed broadly in multiple tissues and is comparable in animals that had initiated ART at week 1 or week 52 of infection. In contrast, viral RNA is restricted primarily to lymph nodes. Ongoing viral RNA transcription is not the result of unsuppressed viral replication, as single-genome amplification and subsequent phylogenetic analysis do not show evidence of viral evolution. Gag-specific CD8+ T cell responses are predominantly observed in secondary lymphoid organs in animals chronically infected prior to ART and these responses are dominated by CD69+ populations. Overall, we observe that the viral reservoir in rhesus macaques is widely distributed across multiple tissue sites and that lymphoid tissues act as a site of persistent viral RNA transcription under conditions of long-term ART suppression.


Subject(s)
Anti-Retroviral Agents/therapeutic use , HIV Infections/virology , Lymph Nodes/virology , RNA, Viral/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Animals , CD8-Positive T-Lymphocytes , DNA, Viral , Disease Models, Animal , Female , HIV Infections/drug therapy , HIV-1/genetics , Lymph Nodes/immunology , Lymphoid Tissue/virology , Macaca mulatta , Phylogeny , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/genetics , Viral Load , Virus Replication
7.
Immunity ; 54(3): 542-556.e9, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33631118

ABSTRACT

A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8+ T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8+ T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Genetic Vectors/genetics , SARS-CoV-2/immunology , Vaccines, DNA/immunology , Vaccinia virus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/genetics , Disease Models, Animal , Gene Expression , Gene Order , Immunophenotyping , Lung/immunology , Lung/pathology , Lung/virology , Macaca , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Mice , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Vaccination/methods , Vaccines, DNA/genetics
8.
J Immunol Methods ; 471: 46-56, 2019 08.
Article in English | MEDLINE | ID: mdl-31132351

ABSTRACT

Neutrophils, the most abundant white blood cell, play a critical role in anti-pathogen immunity via phagocytic clearance, secretion of enzymes and immunomodulators, and the release of extracellular traps. Neutrophils non-specifically sense infection through an array of innate immune receptors and inflammatory sensors, but are also able to respond in a pathogen/antigen-specific manner when leveraged by antibodies via Fc-receptors. Among neutrophil functions, antibody-dependent neutrophil phagocytosis (ADNP) results in antibody-mediated opsonization, enabling neutrophils to sense and respond to infection in a pathogen-appropriate manner. Here, we describe a high-throughput flow cytometric approach to effectively visualize and quantify ADNP and its downstream consequences. The assay is easily adaptable, supporting both the use of purified neutrophils or white blood cells, the use of purified Ig or serum, and the broad utility of any target antigen. Thus, this ADNP assay represents a high-throughput platform for the in-depth characterization of neutrophil function.


Subject(s)
Antibodies/immunology , Antigen-Antibody Complex/immunology , High-Throughput Screening Assays/methods , Neutrophils/immunology , Phagocytosis/immunology , Antigens/immunology , Extracellular Traps/immunology , Flow Cytometry/methods , Humans , Phagocytes/immunology , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...