Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Chem ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045783

ABSTRACT

The study demonstrates the potential of an optical nose made by depositing an array of fluorescent nanomaterials on a paper substrate for the early detection of leukemia in adults. This is based on the fact that blood volatile organic compounds (VOCs) are useful leukemia biomarkers. The integrated design was miniaturized and comprised both sensing zones and a sample holding zone, which were installed on a small sheet of paper within a miniature cubic reaction chamber fabricated by using 3D printing technology. The sensing device, comprising seven fluorescent sensing elements, namely, metal nanoclusters, quantum dots, and carbon dots was capable of detecting VOCs in the blood headspace and providing a colorimetric signature that could discriminate between blood samples from healthy and cancerous individuals. A total of 70 new leukemia cases and 51 healthy controls aged 20-50 years were studied. The device required a 60 µL portion of the blood sample and reacted to blood VOCs after 3 h when kept at 50 °C. The imaging data from the device was processed by linear discriminant analysis, and the results confirmed efficient identification of patient samples from healthy samples with 100% accuracy. Overall, the array system is noninvasive (or minimally invasive), portable, fast, inexpensive, and requires only a small amount of blood sample.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124719, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38959690

ABSTRACT

Mineral water is a natural water that originated from an underground water table, a well, or a natural spring which is considered microbiologically intact. The revenue from the bottled mineral water industry will be USD 342.40 billion in 2023, and it is expected to grow at a compound annual growth rate (CAGR) of 5.24 %. Consequently, the discrimination of original bottled mineral water from tap water is an important issue that requires designing sensors for simple and portable identification of these two types of water. In this work, we have developed a Dip-Type colorimetric paper-based sensor array with three organic dyes (Bromothymol Blue, Bromophenol Blue, and Methyl Red) followed by chemometrics' pattern recognition methods (PCA and LDA) for discrimination of original bottled mineral waters from tap waters based on differences in ion variety and ion quantity. Forty brands of mineral water and twenty-six Tap water samples from different regions of Shiraz and other Iranian cities were analyzed by this sensor array. Moreover, these experiments were performed in two consecutive years to check the versatility of the sensor with seasonal changes in waters. This sensor array was able to discriminate these two water types from each other with an accuracy of > 95 % based on the analysis of 85 water samples.


Subject(s)
Colorimetry , Drinking Water , Mineral Waters , Colorimetry/methods , Mineral Waters/analysis , Drinking Water/analysis , Paper , Discriminant Analysis , Principal Component Analysis
3.
J Diabetes Metab Disord ; 22(2): 1685-1693, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37975136

ABSTRACT

Objectives: Type 2 diabetes is a common metabolic disease affecting millions of people worldwide. α-Glucosidase inhibitors can be used as one of the therapeutic approaches to decrease the postprandial glucose levels through the inhibition of carbohydrate hydrolysis. Medicinal plants are one of the main sources of α-glucosidase's natural inhibitors. In this study, we report the inhibitory effects of 50 different accessions of 32 Salvia species against α-glucosidase. Methods: To estimate the relative potency of the crude extracts, the inhibitory activities of the 80% methanol of the plants extracts were determined in three different concentrations (1000, 500 and 250 µg/ml) and compared to that of acarbose as the positive control. Results: S. multicaulis, S. santolinifolia, S. dracocephaloides, and S. eremophila were stronger inhibitors than acarbose (p < 0.05) with IC50 values in the range of 26.23- 92.35 µg/mL. According to the LC-PDA-ESIMS and NMR analysis of crude extracts of the studied Salvia species, 8 phytochemicals including luteolin-7-O-glucoside (1) luteolin-7-O-glucuronide (2), apigenin-7-O-glucoside (3), apigenin-7-O-glucuronide (4), Hispidulin-7-O-glucuronide (5), hispidulin-7-O-glucoside (6), rosmarinic acid (7), carnosol (8) and carnosic acid (9) were identified as the most common α-glucosidase inhibitors. The above compounds constituted the major compounds in the active Salvia species in the range of 1.5-95.0%. Among them rosmarinic acid (39-95%) was detected in almost all potent α -glucosidase inhibitor species. Therefore, it can be considered as a biochemical marker in the antidiabetic Salvia species in addition to the other minor compounds. Conclusions: Considering the high α-glucosidase inhibitory potential of the four- out of fifty Salvia species, they are suggested for further in vivo antidiabetic tests as potential medicinal plants.

4.
J Chromatogr A ; 1704: 464117, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37300912

ABSTRACT

Paper and thread are widely used as the substrates for fabricating low-cost, disposable, and portable microfluidic analytical devices used in clinical, environmental, and food safety monitoring. Concerning separation methods including chromatography and electrophoresis, these substrates provide unique platforms for developing portable devices. This review focuses on summarizing recent research on the miniaturization of the separation techniques using paper and thread. Preconcentration, purification, desalination, and separation of various analytes are achievable using electrophoresis and chromatography methods integrated with modified or unmodified paper/thread wicking channels. A variety of 2D and 3D designs of paper/thread platforms for zone electrophoresis, capillary electrophoresis, and modified/unmodified chromatography are discussed with emphasis on their limitation and improvements. The current progress in the signal amplification strategies such as isoelectric focusing, isotachophoresis, ion concentration polarization, isoelectric focusing, and stacking methods in paper-based devices are reviewed. Different strategies for chromatographic separations based on paper/thread will be explained. The separation of target species from complex samples and their determination by integration with other analytical methods like spectroscopy and electrochemistry are well-listed. Furthermore, the innovations for plasma and cell separation from blood as an important human biofluid are presented, and the related paper/thread modification methods are explored.


Subject(s)
Isotachophoresis , Microfluidic Analytical Techniques , Humans , Microfluidics , Electrophoresis, Capillary/methods , Isoelectric Focusing/methods , Isotachophoresis/methods , Chromatography
5.
J Pharm Biomed Anal ; 193: 113745, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33190082

ABSTRACT

Iran is one of the main hubs for sage's diversity in Asia. Generally, prediction and characterization of the chemical structures of the specialized metabolites that have significant role in the bioactivity of a plant remains a significant challenge. In this study, 50 different accessions of 32 Salvia species in 2015 and 2017 were collected and extracted for their phenolics, using 80 % methanol. LC-PDA-ESIMS analyses was coupled with multivariate analysis to identify the specific metabolites in the plant extracts, responsible for the antioxidant activity. Based on the variable importance in projection (VIP) method on the Genetic algorithm combined with PLS (GA-PLS) models, eighteen peaks were detected as multifunctional compounds. The putative phenolic compounds were attributed to apigenin-O-diglucoside, rutin, cynaroside, luteolin-7-O-glucoronide, apigenin-7-O-glucoside, apigenin-7-O-glucuronide, hispidulin-7-O-glucuronide, hispidulin-7-O-glucoside, rosmarinic acid, salvianolic acid B derivative, cirsimaritin, eupatorin, and carnosol. This investigation showed that the Salvia's extract can facilitate an opportunity for rapid detection, isolation and development of antioxidant agents.


Subject(s)
Salvia , Antioxidants , Iran , Phenols , Plant Extracts
6.
Inorg Chem ; 58(23): 16154-16170, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31721562

ABSTRACT

In this study, two new bis-cyclometalated Pt(II) complexes, [Pt(C^N)(S^N)] [S^N = deprotonated 6-mercaptopurine (6-MP) and C^N = deprotonated 2-phenylpyridine (ppy), 2a; C^N = deprotonated benzo[h]quinoline (bhq), 2b], are synthesized by the reaction of [PtR(SMe2)(C^N)] (R = Me or p-MeC6H4) with 1 equiv of 6-mercaptopurine (6-HMP) at room temperature. The complexes are fully characterized using 1H and 13C NMR spectroscopies, electrospray ionization mass spectrometry, and elemental analysis. Biomolecular interaction of complex 2a with human serum albumin (HSA) is studied by fluorescence, UV-vis, and circular dichroism (CD) spectroscopies. The binding constants (Kb) and number of binding sites (n) are evaluated using the Stern-Volmer equation. The intrinsic fluorescence of protein is quenched by a static quenching mechanism, with a binding constant of Kb ∼ 105 reflecting a high affinity of complex 2a for HSA. The thermodynamic parameters (ΔH°, ΔG°, and ΔS°) indicate that the interaction is a spontaneous process and hydrophobic forces play a main role in the reaction. The displacement experiments demonstrate that the reactive binding sites of HSA to complex 2a are mainly located within its hydrophobic cavity in subdomain IIA (site I). Synchronous fluorescence spectra reveal that complex 2a affected the microenvironment of tryptophan-214 residues in subdomain IIA of HSA. In the case of interaction of complex 2b and HSA, because of overlapping of the emission spectra of complex 2b with HSA, chemometric approaches are applied. The results indicate significant interaction between the tryptophan residue of HSA and complex 2b. Moreover, the binding of Pt(II) complexes 2a and 2b causes a reduction of the α-helix content of HSA, as obtained by far-UV CD spectroscopy. The average binding distance (r) between Pt(II) complexes and HSA is obtained by Förster's resonance energy-transfer theory. Also, a molecular docking simulation reveals that π-π-stacking and hydrophobic interactions between these complexes and HSA are significant. Furthermore, the interactions of platinum complexes, 2, with calf-thymus DNA (CT-DNA) are investigated. The UV-vis results and ethidium bromide competitive studies support an intercalative interaction of both Pt(II) complexes with DNA. The new complexes 2 are also screened for anticancer activities. The results show that complexes 2 exhibit significant anticancer activity against the K562 (chronic myelogenous leukemia) cell line.


Subject(s)
Antineoplastic Agents/pharmacology , DNA/drug effects , Mercaptopurine/pharmacology , Organoplatinum Compounds/pharmacology , Serum Albumin, Human/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites/drug effects , Cell Proliferation/drug effects , DNA/chemistry , Density Functional Theory , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , K562 Cells , Mercaptopurine/chemistry , Molecular Docking Simulation , Molecular Structure , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Serum Albumin, Human/chemistry , Structure-Activity Relationship , Thermodynamics
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 209: 202-208, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30390506

ABSTRACT

Assays of ferric ion (Fe3+) with high sensitivity and selectivity have been required to evaluate its amount in environmental and biological systems. Herein, a novel fluorometric penicillamine-capped bimetallic gold-copper nanoclusters (PA-AuCu bi-MNCs) sensor was constructed for facile, environmentally friendly and quantitative detection of Fe3+ through inner filter effect (IFE) mechanism. One-step green synthetic approach was applied for the synthesis of AuCu bi-MNCs by using d-penicillamine (D-PA) as template and stabilizer. In the presence of Fe3+, the emission of the PA-AuCu bi-MNCs was hindered that caused selective quenching of the fluorescence intensity. The response to Fe3+ allows for two linear dynamic ranges of 5.0 × 10-7 M-7.0 × 10-6 M and 7.0 × 10-6 M-1.0 × 10-4 M with a detection limit of 0.1 µM, which is approximately 53 times lower than the maximum level (5.37 µM) of Fe3+ in drinking water that had been reported by the World Health Organization. The independency of the system from most of the interferences is the important feature of this work. Beside the appropriate selectivity of the proposed method, it shows a considerable operation in various environmental samples including rain water, three types of river water and also in human blood serum as a biological matrix.


Subject(s)
Biosensing Techniques/methods , Copper/chemistry , Drinking Water/analysis , Fluorescence , Gold/chemistry , Iron/analysis , Metal Nanoparticles/chemistry , Serum/metabolism , Fluorescent Dyes , Humans , Rivers/chemistry
8.
Chemosphere ; 209: 831-838, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30114731

ABSTRACT

Deep eutectic solvents (DESs) are a new generation of solvents. To consider them as green solvents, investigation of their toxicity is essential. In this work, the cytotoxicity of a number of natural deep eutectic solvents (NADESs) against HEK-293 human embryonic kidney cells was evaluated by MTT assay. The NADESs were prepared with choline chloride (ChCl) as hydrogen-bond acceptor (HBA) and different sugar alcohols as hydrogen-bond donor (HBD) constituents. They showed IC50 values in the range of 3.52-75.46 mM. These results were used to evaluate the effect of structural parameters on the cytotoxicity of the studied NADESs by using quantitative structure activity relationship (QSAR) analysis. A three-parameter linear model was obtained between - log(IC50) as a dependent variable and structural descriptors as independent variables. Rotatable bond number (RBN), mean atomic van der Waals volume (Mv) and the interaction of second power carbon numbers with the molar ratio of HBA to HBD in each NADES (C2 Ratio), were three major parameters. The statistical model covered about 76.4% and 69.8% variance of data in training and leave-one-out cross-validation, respectively. This work, as the first study on the QSAR analysis of DESs, can provide a good perspective for designing greener novel DESs.


Subject(s)
Choline/chemistry , HEK293 Cells/metabolism , Quantitative Structure-Activity Relationship , Solvents/chemistry , Humans
9.
ACS Appl Mater Interfaces ; 8(24): 15177-86, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27211049

ABSTRACT

A new ratiometric fluorescent sensor was developed for the sensitive and selective detection of cyanide ion (CN(-)) in aqueous media. The ratiometric sensing system is based on CN(-) modulated recovery of copper(II) phthalocyanine (Cu(PcTs)) fluorescence signal at the expense of diminished fluorescence intensity of gold nanoclusters (AuNCs). Preliminary experiments revealed that the AuNCs and Cu(PcTs) possess a turn-off effect on each other, the interaction of which being verified through studying their interactions by principle component analysis (PCA) and multivariate cure resolution-alternating least-squares (MCR-ALS) methods. In the presence of CN(-) anion, the AuNCs and Cu(PcTs) interaction was perturbed, so that the fluorescence of Cu (PcTs), already quenched by AuNCs, was found to be efficiently recovered, while the fluorescence intensity of AuNCs was quenched via the formation of a stable [Au(CN)2](-) species. The ratiometric variation of AuNCs and Cu(PcTs) fluorescence intensities leads to designing a highly sensitive probe for CN(-) ion detection. Under the optimal conditions, CN(-) anion was detected without needing any etching time, over the concentration range of 100 nM-220 µM, with a detection limit of 75 nM, which is much lower than the allowable level of CN(-) in water permitted by the World Health Organization (WHO). Moreover, the detection of CN(-) was developed based on the CN(-) effects on the blue and red florescent colors of Cu(PcTs) and AuNCs, respectively. The designed probe displays a continuous color change from red to blue by addition of CN(-), which can be clearly observed by the naked eye in the range of 7-350 µM, under UV lamp. The prepared AuNCs/Cu(PcTs) probe was successfully utilized for the selective and sensitive determination of CN(-) anion in two different types of natural water (Rodbal dam and rainwater) and also in blood serum as a biological sample.


Subject(s)
Chemistry Techniques, Analytical/methods , Cyanides/analysis , Fluorescent Dyes/chemistry , Indoles/chemistry , Metal Nanoparticles/chemistry , Water/chemistry , Copper/chemistry , Gold/chemistry , Isoindoles , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL