Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Article in English | MEDLINE | ID: mdl-38753442

ABSTRACT

Background: Waning immunity and emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlight the need for further research in vaccine development. Methods: A recombinant fusion protein containing the receptor-binding domain (RBD) fused to the human IgG1 Fc (RBD-Fc) was produced in CHO-K1 cells. RBD-Fc was emulsified with four adjuvants to evaluate its immunogenicity. The RBD-specific humoral and cellular immune responses were assessed by ELISA. The virus neutralizing potency of the vaccine was investigated using four neutralization methods. Safety was studied in mice and rabbits, and Antibody-Dependent Enhancement (ADE) effects were investigated by flow cytometry. Results: RBD-Fc emulsified in Alum induced a high titer of anti-RBD antibodies with remarkable efficacy in neutralizing both pseudotyped and live SARS-CoV-2 Delta variant. The neutralization potency dropped significantly in response to the Omicron variant. RBD-Fc induced both TH2 and particularly TH1 immune responses. Histopathologic examinations demonstrated no substantial pathologic changes in different organs. No changes in serum biochemical and hematologic parameters were observed. ADE effect was not observed following immunization with RBD-Fc. Conclusion: RBD-Fc elicits highly robust neutralizing antibodies and cellular immune responses, with no adverse effects. Therefore, it could be considered a promising and safe subunit vaccine against SARS-CoV-2.

2.
Article in English | MEDLINE | ID: mdl-38669775

ABSTRACT

Filamentous hemagglutinin (FHA) is a critical adhesion molecule produced by Bordetella pertussis (BP), the causative agent of highly contagious respiratory infection known as whooping cough. FHA plays a pivotal role in the pathogenesis of whooping cough and is a key component of acellular pertussis vaccines (aPV). However, conventional purification methods for FHA often involve labor-intensive processes and result in low purity and recovery rates. Therefore, this study explores the use of monoclonal and polyclonal antibodies as specific tools to achieve highly pure and efficient FHA purification. To generate FHA-specific antibodies, polyclonal antibodies were produced by immunizing sheep and monoclonal antibodies (MAbs) were generated by immunizing mice with recombinant and native FHA. The MAbs were selected based on affinity, isotypes, and specificity, which were assessed through ELISA and Western blot assays. Two immunoaffinity columns, one monoclonal and one polyclonal, were prepared for FHA antigen purification. The purity and recovery rates of these purifications were determined using ELISA, SDS-PAGE, and immunoblotting. Furthermore, the MAbs were employed to develop an ELISA assay for FHA antigen concentration determination. The study's findings revealed that immunoaffinity column-based purification of FHA resulted in a highly pure antigen with recovery rates of approximately 57% ± 6.5% and 59% ± 7.9% for monoclonal and polyclonal columns, respectively. Additionally, the developed ELISA exhibited appropriate reactivity for determining FHA antigen concentration. This research demonstrates that affinity chromatography is a viable and advantageous method for purifying FHA, offering superior purity and recovery rates compared to traditional techniques. This approach provides a practical alternative for FHA purification in the context of aPV development.


Subject(s)
Antibodies, Monoclonal , Bordetella pertussis , Chromatography, Affinity , Virulence Factors, Bordetella , Chromatography, Affinity/methods , Animals , Bordetella pertussis/immunology , Bordetella pertussis/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/immunology , Mice , Virulence Factors, Bordetella/immunology , Virulence Factors, Bordetella/chemistry , Adhesins, Bacterial/immunology , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/isolation & purification , Mice, Inbred BALB C , Sheep , Antibodies, Bacterial/immunology , Antibodies, Bacterial/chemistry , Enzyme-Linked Immunosorbent Assay/methods
3.
Iran J Immunol ; 21(1): 1-14, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38433582

ABSTRACT

Background: Since the outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), several vaccine candidates have been developed within a short period of time. Although the potency of these vaccines was evaluated individually, their comparative potency was not comprehensively evaluated. Objective: To compare the immunogenicity and neutralization efficacy of four approved COVID-19 vaccines in Iran, including: PastoCovac Plus, Sinopharm, SpikoGen, and Noora in BALB/c mice. Methods: Different groups of female BALB/c mice were vaccinated with three doses of each vaccine. The serum levels of antibodies against the viral receptor binding domain (anti-RBD) and spike (anti-spike) protein as well as the vaccine formulation (anti-vaccine) were evaluated using enzyme-linked immunosorbent assay (ELISA). The neutralization efficacy of these four vaccines was assessed through four neutralization assays: conventional virus neutralization test (cVNT), pseudotype virus neutralization test (pVNT), surrogate virus neutralization test (sVNT), and inhibition flow cytometry. Results: All four vaccines induced seroconversion in vaccinated animals. All vaccines successfully induced high levels of anti-vaccine antibody; however, PastoCovac Plus and Sinopharm vaccines induced significantly higher levels of anti-RBD antibody titer compared to Noora and SpikoGen. Moreover, the results of the antibody response were corroborated by the virus neutralization tests, which revealed very weak neutralization potency by Noora and SpikoGen in all tests. Conclusion: Our results indicate significant immunogenicity and neutralization efficacy induced by PastoCovac Plus and Sinopharm, but not by Noora and SpikoGen. This suggests the need for additional comparative assessment of the potency and efficacy of these four vaccines in vaccinated subjects.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Animals , Mice , Female , COVID-19 Vaccines , Antibodies, Neutralizing , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral , Mice, Inbred BALB C , Neutralization Tests
4.
Clin Breast Cancer ; 24(1): e9-e19.e9, 2024 01.
Article in English | MEDLINE | ID: mdl-37863762

ABSTRACT

PURPOSE: Breast cancer is one of the most common cancers in the world. It is a multifaceted malignancy with different histopathological and biological features. Molecular biomarkers play an essential role in accurate diagnosis, classification, prognosis, prediction of treatment response, and cancer surveillance. This study investigated the clinico-pathological and prognostic significance of HER3 and ROR1 in breast cancer samples. METHODS: Tissue microarrays (TMA) were constructed using tissue blocks of 444 Iranian breast cancer patients diagnosed with breast cancer. Overall survival (OS) and disease-free survival (DFS) were assessed after 5 years follow-up. TMA slides were stained with monoclonal antibodies against ROR1, HER3, ER, PR, Ki67, P53, HER2 and CK5/6 using IHC and correlation between the investigated tumor markers and the clinico-pathological parameters of patients were analyzed. RESULTS: Our results showed a significant correlation between ROR1 and ER, PR, HER3, and CK5/6 expression. Additionally, there was a significant correlation between HER3 and ER, PR, HER2, and Ki67 expression. Ki67 was also correlated with HER2 and P53 expression. HER3 expression was significantly correlated with tumor stage, lymph node metastasis, perineural invasion, and multifocal tumors. Furthermore, ROR1 expression was significantly associated with tumor metastasis, lympho-vascular invasion, and perineural invasion. While HER2-HER3 coexpression was significantly associated with poor OS, HER3-ROR1 coexpression was associated with lymph node invasion, lymph node metastasis, and distant metastasis. CONCLUSION: ROR1 and HER3 displayed significant association with different clinic-pathological features and in addition to the other tumor biomarkers could be considered as diagnostic and prognostic biomarkers in breast cancer patients.


Subject(s)
Breast Neoplasms , Humans , Female , Biomarkers, Tumor , Prognosis , Iran , Receptor, ErbB-2/metabolism , Ki-67 Antigen/metabolism , Lymphatic Metastasis , Tumor Suppressor Protein p53 , Receptors, Progesterone/metabolism
5.
Daru ; 31(2): 221-231, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37695454

ABSTRACT

BACKGROUND: Producing therapeutic proteins can be done quickly and on a large scale through Transient Gene Expression (TGE). Chinese hamster ovary (CHO) cell lines are commonly used to achieve this. Although there are few comparative studies, TGE has been observed in suspension-adapted CHO cells. OBJECTIVES: We tested TGE's effectiveness in DG-44, CHO-S, and ExpiCHO-S cell lines with four transfection reagents. METHODS: A design of experiments (DoE) was followed to optimize transfection using a recombinant monoclonal antibody (mAb) construct. To evaluate the efficacy, flow cytometry and ELISA were used. Feeding strategies and temperature shifts were implemented to enhance transfection effectiveness. The quality of the mAb was assessed through ELISA, SDS-PAGE, and proliferation inhibition assays. RESULTS: We adapted all cell lines to grow in suspension using a serum-free medium. Our findings from flow cytometry and ELISA tests indicate that PEI and Pmax reagents had a higher rate of transfection and mAb production than the ExpiCHO commercial transfection reagent. While DG-44 cells had better transfection efficiency than CHO-S and ExpiCHO-S, there was no significant difference between CHO-S and ExpiCHO-S. Our TGE system was more productive at 32 °C than at 37 °C. In the optimized TGE of Pmax-based transfection in DG-44 at 37 and 32 °C, the production level of mAb was more than half of the amount of the commercial ExpiCHO-S expression system. Still, the number of transfected cells was three times higher, making it more efficient. The purified mAb from all transfected cell lines had similar structural and functional properties under different conditions. CONCLUSION: Our research shows that using Pmax and DG-44 cells in the TGE system is a cost-effective and efficient way to produce humanized monoclonal antibodies. We discovered that this method outperforms the ExpiCHO-S kit.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents , Cricetinae , Animals , Cricetulus , CHO Cells , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/genetics , Recombinant Proteins , Gene Expression
6.
Cell Tissue Res ; 394(1): 177-188, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37535101

ABSTRACT

Here, retrotransposon-like 1 (RTL1) is introduced as a marker for circulating and tissue neutrophils, tissue macrophages, and tumor-associated macrophages (TAM) and neutrophils (TAN). Anti-RTL1 polyclonal and monoclonal antibodies were produced, and their reactivity was examined by Western blotting (WB), ELISA, and immunostaining of human normal and cancer tissues. The reactivity of the anti-RTL1 antibodies with peripheral blood leukocytes and a panel of hematopoietic cell lines was examined. The generated antibodies specifically detected RTL1 in the WB of the placenta and U937 cells. The polyclonal antibody showed excellent reactivity with tissue-resident macrophages, Hofbauer cells, alveolar and splenic macrophages, Kupffer cells, and inflammatory cells in the tonsil, appendix, and gallbladder. In vitro GM-CSF-differentiated macrophages also showed a high level of intracellular RTL1 expression. TAM and TAN also showed excellent reactivity with this antibody. Almost all circulating granulocytes but not lymphocytes or monocytes expressed RTL1 at their surface. Serial sections of the appendix stained with CD15 and RTL1 and placenta stained with CD68 and RTL1 showed a considerable overlap in RTL1 expression in CD15+ granulocytes and CD68+ macrophages. A small percentage of myelomonocytic cell lines was positive for surface RTL1, while promyelocytic, monocytic, megaloblastic, and lymphoblastic cell lines were negative. Endothelial cells of normal and cancer tissues highly expressed RTL1. RTL1 could be considered a new marker for different normal tissue macrophages, TAM, circulating and tissue neutrophils, and TAN.

7.
J Microbiol Methods ; 211: 106786, 2023 08.
Article in English | MEDLINE | ID: mdl-37454935

ABSTRACT

BACKGROUND: Pertussis, or whooping cough, is a highly contagious respiratory disease caused by Bordetella pertussis (BP). Pertactin (PRN) is one of the main immunogenic components of BP and is employed in many commercialized acellular pertussis vaccines (aPVs). Purification of this protein by conventional chromatography methods is challenging and commonly requires multiple laborious processes with low recovery. Using specific monoclonal antibodies (mAbs) for the purification of PRN antigen is expected to yield high purity and recovery of the target molecule. METHODS: Recombinant PRN antigen was used to produce mouse mAbs using hybridoma technology. Structural and functional characteristics of the mAbs were assessed by ELISA, immunoblotting, and flow cytometry. Selected mAbs were employed to purify PRN by affinity chromatography, and the purity and recovery of the purified protein were analyzed by ELISA, SDS-PAGE, and immunoblotting. Moreover, ELISA and flow cytometry techniques were designed using these mAbs to detect PRN in different strains of BP. RESULTS: Five mAbs were produced and selected based on their reactivity with native PRN. Our results demonstrate that purification of PRN by affinity chromatography resulted in a highly pure antigen with 75-85 percent recovery. In addition, ELISA and flow cytometry results indicated that these mAbs could recognize PRN in the bacterial cell walls of different BP strains. CONCLUSION: We successfully produced PRN-specific mAbs and designed an affinity chromatography method to purify PRN antigen with higher purity and recovery than conventional methods. These mAbs could be employed as valuable tools for the detection and purification of PRN for vaccine manufacturing.


Subject(s)
Whooping Cough , Animals , Mice , Whooping Cough/diagnosis , Whooping Cough/prevention & control , Virulence Factors, Bordetella , Bordetella pertussis , Bacterial Outer Membrane Proteins , Pertussis Vaccine , Antibodies, Monoclonal , Antibodies, Bacterial
8.
Iran J Allergy Asthma Immunol ; 22(3): 217-232, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37524659

ABSTRACT

Coronavirus disease 2019 (COVID-19), described as World War 3, is the current worldwide health challenge and nearly all countries have so far faced this disaster. There is still no cure because of the complicated pathogenesis, however, there are several studies on track investigating different aspects of the immune response to the virus. In this review, we will provide an overview of recent investigations that have analyzed immune cells in patients with COVID-19. We will then discuss the differences in immune profiles between healthy controls and various clinical presentations, including asymptomatic, mild, moderate, and severe cases.

9.
J Med Microbiol ; 72(6)2023 Jun.
Article in English | MEDLINE | ID: mdl-37387700

ABSTRACT

Introduction. Neutralizing antibodies have been widely used for the prophylaxis and treatment of COVID-19.Hypothesis. The major target for these neutralizing antibodies is the receptor-binding domain (RBD) of the viral spike protein.Aim. In the present study, we developed and characterized three neutralizing chimeric mouse-human mAbs for potential therapeutic purposes.Methodology. Light and heavy chain variable region genes of three mouse mAbs (m4E8, m3B6, and m1D1) were amplified and ligated to human Cγ1 and Cκ constant region genes by PCR. After cloning into a dual promoter mammalian expression vector, the final constructs were transiently expressed in DG-44 cells and the purified chimeric antibodies were characterized by ELISA and Western blotting. The neutralizing potency of the chimeric mAbs was determined by three different virus neutralization tests including sVNT, pVNT, and cVNT.Results. All three recombinant chimeric mAbs display human constant regions and are able to specifically bind to the RBD of SARS-CoV-2 with affinities comparable to the parental mAbs. Western blot analysis showed similar epitope specificity profiles for both the chimeric and the parental mouse mAbs. The results of virus neutralization tests (sVNT, pVNT, and cVNT) indicate that c4E8 had the most potent neutralizing activity with IC50 values of 1.772, 0.009, and 0.01 µg ml-1, respectively. All chimeric and mouse mAbs displayed a similar pattern of reactivity with the spike protein of the SARS-CoV-2 variants of concern (VOC) tested, including alpha, delta, and wild-type.Conclusion. The chimeric mAbs displayed neutralizing potency similar to the parental mouse mAbs and are potentially valuable tools for disease control.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , SARS-CoV-2/genetics , COVID-19/therapy , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Monoclonal , Antibodies, Neutralizing , Mammals
10.
Viral Immunol ; 36(6): 378-388, 2023.
Article in English | MEDLINE | ID: mdl-37294935

ABSTRACT

Hepatitis B virus (HBV) infection is a major health problem worldwide and causes almost one million deaths annually. The HBV core gene codes for two related antigens, known as core antigen (HBcAg) and e-antigen (HBeAg), sharing 149 residues but having different amino- and carboxy-terminals. HBeAg is a soluble variant of HBcAg and a clinical marker for determining the disease severity and patients' screening. Currently available HBeAg assays have a shortcoming of showing cross-reactivity with HBcAg. In this study, for the first time, we evaluated whether HBcAg-adsorbed anti-HBe polyclonal antibodies could specifically recognize HBeAg or still show cross-reactivity with HBcAg. Recombinant HBeAg was cloned in pCold1 vector and successfully expressed in Escherichia coli and after purification by Ni-NTA resin was used to generate polyclonal anti-HBe antibodies in rabbit. Purified HBeAg was further characterized by assessing its reactivity with anti-HBe in the sera of chronically infected patients and HBeAg-immunized rabbit. Sera from patients with chronic HBV infection, containing anti-HBe, specifically reacted with recombinant HBeAg, implying antigenic similarity between the prokaryotic and native HBeAg in the serum of HBV-infected patients. In addition, the designed enzyme-linked immunosorbent assay (ELISA) with rabbit anti-HBe polyclonal antibodies could detect recombinant HBeAg with high sensitivity, while high cross-reactivity with HBcAg was observed. It is noteworthy that HBcAg-adsorbed anti-HBe polyclonal antibodies still showed high cross-reactivity with HBcAg, implying that due to the presence of highly similar epitopes in both antigens, HBcAg-adsorbed polyclonal antibodies cannot differentiate between the two antigens.


Subject(s)
Hepatitis B Core Antigens , Hepatitis B , Animals , Humans , Rabbits , Hepatitis B Core Antigens/genetics , Hepatitis B e Antigens , Hepatitis B virus/genetics , Hepatitis B Antibodies
11.
Int Immunopharmacol ; 121: 110463, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37327513

ABSTRACT

INTRODUCTION: Clinical efficacy of Human Epidermal growth factor Receptor 2 (HER2) targeted strategies is limited due to impaired anti-tumor responses negatively regulated by immunosuppressive cells. We thus, investigated the inhibitory effects of an anti-HER2 monoclonal antibody (1 T0 mAb) in combination with CD11b+/Gr-1+ myeloid cells depletion in 4 T1-HER2 tumor model. METHODS: BALB/c mice were challenged with human HER2-expressing 4 T1 murine breast cancer cell line. A week post tumor challenge, each mouse received 50 µg of a myeloid cells specific peptibody every other day, or 10 mg/kg of 1 T0 mAb two times a week, and their combination for two weeks. The treatments effect on tumor growth was measured by calculating tumor size. Also, the frequencies of CD11b+/Gr-1+ cells and T lymphocytes were measured by flow cytometry. RESULTS: Peptibody treated mice indicated tumor regression and 40 % of the mice eradicated their primary tumors. The peptibody was capable to deplete notably splenic CD11b+/Gr-1+ cells as well as intratumoral CD11b+/Gr-1+ cells (P < 0.0001) and led to an increased number of tumor infiltrating CD8+ T cells (3.3 folds) and also that of resident tumor draining lymph nodes (TDLNs) (3 folds). Combination of peptibody and 1 T0 mAb resulted in enhanced expansion of tumor infiltrating CD4 + and CD8+ T cells which was associated with tumor eradication in 60 % of the mice. CONCLUSIONS: Peptibody is able to deplete CD11b+/Gr-1+ cells and increase anti-tumoral effects of the 1 T0 mAb in tumor eradication. Thus, this myeloid population have critical roles in development of tumors and their depletion is associated with induction of anti-tumoral responses.


Subject(s)
Antineoplastic Agents , Neoplasms , Mice , Humans , Animals , CD8-Positive T-Lymphocytes , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Myeloid Cells , Mice, Inbred BALB C , Cell Line, Tumor , CD11b Antigen
12.
Iran J Immunol ; 20(2): 177-189, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37149778

ABSTRACT

Background: Ki67 and P53 are important diagnostic and prognostic biomarkers expressed in several cancers. The current standard method for evaluating Ki67 and P53 in cancer tissues is immunohistochemistry (IHC), and having highly sensitive monoclonal antibodies against these biomarkers is necessary for an accurate diagnosis in the IHC test. Objective: To generate and characterize novel monoclonal antibodies (mAbs) against human Ki67 and P53 antigens for IHC purposes. Methods: Ki67 and P53-specific mAbs were produced by the hybridoma method and screened by enzyme-linked immunosorbent assay (ELISA) and IHC techniques. Selected mAbs were characterized using Western blot and flow cytometry, and their affinities and isotypes were determined by ELISA. Moreover, using the IHC technique in 200 breast cancer tissue samples, we assessed the specificity, sensitivity, and accuracy of the produced mAbs. Results: Two anti-Ki67 (2C2 and 2H1) and three anti-P53 mAbs (2A6, 2G4, and 1G10) showed strong reactivity to their target antigens in IHC. The selected mAbs were also able to recognize their targets by flow cytometry as well as Western blotting using human tumor cell lines expressing these antigens. The specificity, sensitivity, and accuracy calculated for clone 2H1 were 94.2%, 99.0%, and 96.6%, and for clone 2A6 were 97.3%, 98.1%, and 97.5%, respectively. Using these two monoclonal antibodies, we found a significant correlation between Ki67 and P53 overexpression and lymph node metastasis in patients with breast cancer. Conclusion: The present study showed that the novel anti-Ki67 and anti-P53 mAbs could recognize their respective antigens with high specificity and sensitivity and therefore can be used in prognostic studies.


Subject(s)
Antibodies, Monoclonal , Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Biomarkers, Tumor , Immunohistochemistry , Enzyme-Linked Immunosorbent Assay
13.
Immunol Res ; 71(5): 698-708, 2023 10.
Article in English | MEDLINE | ID: mdl-37097524

ABSTRACT

SLE is a multisystem autoimmune disease characterized by multiple immunological abnormalities including production of autoantibodies. While the etiology of SLE is largely unknown, it is generally accepted that both genetic and environmental factors contribute to disease risk and immune dysregulation. Production of IFN-α is important for protecting the host against infections; however, over stimulation of innate immune pathways can induce autoimmune disease. Environmental factors, particularly Epstein-Barr virus (EBV), have been proposed to play an important role in SLE disease. Improper engagement of Toll-like receptor (TLR) pathways by endogenous or exogenous ligands may lead to the initiation of autoimmune responses and tissue injury. EBV is shown to be a potent stimulant of IFN-α by TLR signaling cascades. Given the highlighted role of IFN-α in SLE pathogenesis and potential role of EBV infection in this disease, the present study is aimed at exploring the in vitro effects of EBV infection and CPG (either alone or in combination) on IFN-α. We also examined the expression level of CD20 and BDCA-4 and CD123 in PBMCs in 32 SLE patients and 32 healthy controls. Our results showed PBMCs treated with CPG-induced higher levels of IFN-α and TLR-9 gene expression fold change compared to cells treated with either EBV or EBV-CPG. Moreover, PBMCs treated with CPG produced significantly higher IFN-α concentration in supernatant compared to cells treated with EBV but not EBV-CPG. Our results further highlight the potential role of EBV infection and TLRs in SLE patients although more studies are warranted to ascertain the global imprint that EBV infection can have on immune signature in patients with SLE.


Subject(s)
Epstein-Barr Virus Infections , Lupus Erythematosus, Systemic , Humans , Herpesvirus 4, Human , Toll-Like Receptor 9/metabolism , Ligands , Interferon-alpha , Toll-Like Receptor 7
14.
J Immunother ; 46(4): 121-131, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36939675

ABSTRACT

Human epidermal growth factor receptor 2 (HER2) overexpression has been demonstrated in a variety of cancers. Targeted therapy with anti-HER2 monoclonal antibodies (mAbs) has been approved as a therapeutic modality. Despite the efficacy of mAbs in tumor treatment, many patients do not benefit from this therapeutic platform. Fragment crystallizable (Fc) engineering is a common approach to improve the efficacy of therapeutic mAbs. Five Fc-engineered mAbs have so far been approved by FDA. We have recently developed an anti-HER2 bispecific mAb, BiHT, constructed from variable domains of trastuzumab, and our novel humanized anti-HER2 mAb, hersintuzumab. BiHT displayed promising antitumor activity as potently as the combination of the parental mAbs. Here, we aimed to modify the Fc of BiHT to improve its therapeutic efficacy. The Fc-engineered BiHT (MBiHT) bound to recombinant HER2 and its subdomains with an affinity similar to BiHT. It also recognized native HER2 on different cell lines, inhibited their proliferation, downregulated HER2 expression, and suppressed downstream signaling pathways similar to BiHT. Compared with BiHT, MBiHT displayed enhanced antibody-dependent cellular cytotoxicity activity against various tumor cell lines. It also inhibited the growth of ovarian xenograft tumors in nude mice more potently than BiHT. Our findings suggest that MBiHT could be a potent therapeutic candidate for the treatment of HER2-overexpressing cancer types.


Subject(s)
Antibodies, Bispecific , Antibodies, Monoclonal, Humanized , Mice , Animals , Humans , Mice, Nude , Trastuzumab , Antibodies, Monoclonal/metabolism , Receptor, ErbB-2 , Cell Line, Tumor , Xenograft Model Antitumor Assays
15.
Rev Med Virol ; 33(3): e2431, 2023 05.
Article in English | MEDLINE | ID: mdl-36790816

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is transmitted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has affected millions of people all around the world, leading to more than 6.5 million deaths. The nucleocapsid (N) phosphoprotein plays important roles in modulating viral replication and transcription, virus-infected cell cycle progression, apoptosis, and regulation of host innate immunity. As an immunodominant protein, N protein induces strong humoral and cellular immune responses in COVID-19 patients, making it a key marker for studying N-specific B cell and T cell responses and the development of diagnostic serological assays and efficient vaccines. In this review, we focus on the structural and functional features and the kinetic and epitope mapping of B cell and T cell responses against SARS-CoV-2 N protein to extend our understanding on the development of sensitive and specific diagnostic immunological tests and effective vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , COVID-19 Vaccines , Nucleocapsid/metabolism , COVID-19 Testing
16.
Anal Biochem ; 666: 115079, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36754135

ABSTRACT

BACKGROUND AND AIMS: The coronavirus disease 2019 (COVID-19) pandemic is a serious health problem worldwide. Early virus detection is essential for disease control and management. Viral antigen detection by ELISA is a cost-effective, rapid, and accurate antigen diagnostic assay which could facilitate early viral detection. METHOD: An antigen-capture sandwich ELISA was developed using novel nucleocapsid (NP)-specific mouse monoclonal antibodies (MAbs). The clinical performance of the assay was assessed using 403 positive and 150 negative respiratory samples collected during different SARS-CoV-2 variants outbreaks in Iran. RESULTS: The limit of detection of our ELISA assay was found to be 43.3 pg/ml for recombinant NP. The overall sensitivity and specificity of this assay were 70.72% (95% CI: 66.01-75.12) and 100% (95% CI: 97.57-100), respectively, regardless of Ct values and SARS-CoV-2 variants. There was no significant difference in our assay sensitivity for the detection of Omicron subvariants compared to Delta variant. Assay sensitivity for the BA.5 Omicron subvariant was calculated as 91.89% (95% CI: 85.17-96.23) for samples with Ct values < 25 and 82.70% (95% CI: 75.19-88.71) for samples with Ct values < 30. CONCLUSION: Our newly developed ELISA method is reasonably sensitive and highly specific for detection of SARS-CoV-2 regardless of the variants and subvariants of the virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay/methods , Sensitivity and Specificity , Antibodies, Viral , COVID-19 Testing
17.
J Cancer Res Clin Oncol ; 149(6): 2437-2450, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35737089

ABSTRACT

PURPOSE: Several approaches have so far been employed to establish anti-tumor immunity by targeting HER2 protein. Active immunization with recombinant HER2 subdomains has previously been demonstrated to induce potent immune response and tumor growth inhibition. In the present study, we investigated the immunogenicity and tumor inhibitory effect of a fusion protein consisting of human HER2 extracellular subdomain (ECD-DI + II) together with T-helper cell epitopes of Tetanus toxin (p2 and p30). METHODS: BALB/c mice were immunized with two recombinant proteins (DI + II and p2p30-DI + II) emulsified in 4 different adjuvants. Anti-DI + II antibody response, cytokine profile, frequency of splenic CD25+FOXP3+ regulatory T cells (Tregs) and CD8+CD107a+ cytotoxic T lymphocytes (CTLs) were assessed in the immunized mice. To assess the anti-tumor effect, the immunized mice were subcutaneously challenged with HER2-overexpressing tumor cells and the tumor growth was determined. RESULTS: Both recombinant proteins were able to induce comparable levels of ECD-DI + II-specific antibodies. Immunization with p2p30-DI + II resulted in a significant increase in the level of Interferon-gamma (IFN-γ) secretion compared to DI + II protein and significantly higher frequency of CTLs and lower frequency of Tregs. The number of mice that remained tumor-free until day 120 was significantly higher in p2p30-DI + II vaccinated groups. CONCLUSIONS: Our data suggest that the p2p30-DI + II fusion protein together with CpG adjuvant induces more potent anti-tumor immune responses in a mouse tumor model. Accordingly, this formulation might be considered as a potential immunotherapeutic approach in HER2+ cancers.


Subject(s)
Genes, erbB-2 , Neoplasms , Receptor, ErbB-2 , Animals , Humans , Mice , Adjuvants, Immunologic , Antibodies , Immunity , Mice, Inbred BALB C , Receptor, ErbB-2/metabolism , Recombinant Proteins
18.
Cancers (Basel) ; 14(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36497309

ABSTRACT

The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a new tumor associated antigen (TAA) which is overexpressed in several hematopoietic and solid malignancies. The present study aimed to produce and evaluate different fusion proteins of mouse ROR1 (mROR1) to enhance immunogenicity and protective efficacy of ROR1. Four ROR1 fusion proteins composed of extracellular region of mROR1, immunogenic fragments of TT as well as Fc region of mouse IgG2a were produced and employed to immunize Balb/C mice. Humoral and cellular immune responses and anti-tumor effects of these fusion proteins were evaluated using two different syngeneic murine ROR1+ tumor models. ROR1-specific antibodies were induced in all groups of mice. The levels of IFN-γ, IL-17 and IL-22 cytokines in culture supernatants of stimulated splenocytes were increased in all groups of immunized mice, particularly mice immunized with TT-mROR1-Fc fusion proteins. The frequency of ROR1-specific CTLs was higher in mice immunized with TT-mROR1-Fc fusion proteins. Finally, results of tumor challenge in immunized mice showed that immunization with TT-mROR1-Fc fusion proteins completely inhibited ROR1+ tumor cells growth in two different syngeneic tumor models until day 120 post tumor challenge. Our preclinical findings, for the first time, showed that our fusion proteins could be considered as a potential candidate vaccine for active immunotherapy of ROR1-expressing malignancies.

19.
Int Immunopharmacol ; 113(Pt B): 109470, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36435059

ABSTRACT

BACKGROUND: Clinical trials using Cabozantinib have shown promising results in metastatic breast cancer. This efficacy mainly results from removing and/or polarization of tumor-promoting myeloid cells. Nevertheless, whether such myeloid-derived suppressor cells (MDSCs) depletion can be used to improve the efficacy of anti-HER2 antibodies in early breast cancer has not been defined yet. METHODS: BALB/c mice were inoculated with 4T1 and 4T1-HER2 murine tumor cell lines, and after 7 days, the mice were divided into different groups. Cabozantinib was orally administrated for 15 consecutive days, and anti-HER2 monoclonal antibody (mAb) 1 T0 was intraperitoneally injected twice a week. Tumor size was measured every other day. RESULTS: Our findings indicated that Cabozantinib combined with anti-HER2 mAb dramatically reduced tumor growth and increased tumor rejection (p = 0.0001). Flow cytometry analysis showed MDSC population decreased in TME, lymph nodes, and spleens by roughly 20%, 0.8%, and 35%, respectively. Myeloid suppressive phenotype was altered through inhibition of the expression of immunosuppressive factor Arg-1. Cytokine profiling of different groups indicated that the level of INF-γ was approximately two times higher than that in the control group, and IL-17 increased compared to the control group. However, IL-4 level was significantly reduced in the groups treated with Cabozantinib. These could bring about a 10% increase in CD8+ infiltration into the tumor bed and activation of tumor-draining lymph nodes and splenic T-lymphocytes. CONCLUSION: Collectively, our data provide pre-clinical evidence for using Cabozantinib to reshape the primary TME, which can enhance the effectiveness of anti-HER2 mAb immunotherapy in primary breast cancer.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Mice , Animals , Immunotherapy , Immunologic Factors , Antibodies, Monoclonal/therapeutic use , Mice, Inbred BALB C
20.
Iran J Immunol ; 19(3): 278-298, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36190382

ABSTRACT

BACKGROUND: Human polyclonal plasma-derived hepatitis B immunoglobulin (HBIG) is currently used for immunoprophylaxis of HBV infection. The development of virus-neutralizing monoclonal antibodies (MAbs) requires the use of optimized cell culture systems supporting HBV infection. OBJECTIVE: This study aims to optimize the hepatitis B virus infectivity of NTCP-reconstituted HepG2 (HepG2-NTCP) cells to establish an efficient system to evaluate the HBV-neutralizing effect of anti-HBs MAbs. METHODS: Serum-derived HBV (sHBV) and cell culture-derived HBV (ccHBV) were simultaneously used for the optimization of HBV infection in HepG2-NTCP cells by applying different modifications. RESULTS: Our results for the first time showed that in addition to human serum, monkey serum could significantly improve ccHBV infection, while fetal and adult bovine serum as well as duck and sheep serum did not have a promotive effect. In addition, sHBV and ccHBV infectivity are largely similar except that adding 5% of PEG, which is commonly used to improve in vitro infection of ccHBV, significantly reduced sHBV infection. We showed that a combination of spinoculation, trypsinization, and also adding human or monkey serum to HBV inoculum could significantly improve the permissivity of HepG2-NTCP cells to HBV infection compared with individual strategies. All anti-HBs MAbs were able to successfully neutralize both ccHBV and sHBV infection in our optimized in vitro system. CONCLUSION: Our study suggests different strategies for improving ccHBV and sHBV infection in HepG2-NTCP cells. This cell culture-based system allows assessment of HBV neutralizing MAbs and may also prove to be valuable for the analysis of other HBV neutralizing therapeutics.


Subject(s)
Hepatitis B , Symporters , Animals , Antibodies, Monoclonal , Cell Culture Techniques , Haplorhini , Hepatitis B virus , Humans , Organic Anion Transporters, Sodium-Dependent/pharmacology , Sheep , Symporters/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...