Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
2.
Blood ; 143(22): 2314-2331, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38457357

ABSTRACT

ABSTRACT: For monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability. In blood outgrowth endothelial cells (BOECs) derived from patients with ACVRL1+/PTC, ENG+/PTC, and SMAD4+/PTC genotypes, PTC-containing RNA transcripts persisted at low levels (8%-23% expected, varying between replicate cultures); genes differentially expressed to Bonferroni P < .05 in HHT+/PTC BOECs clustered significantly only to generic protein terms (isopeptide-bond/ubiquitin-like conjugation) and pulse-chase experiments detected subtle protein maturation differences but no evidence for PTC-truncated protein. BOECs displaying highest PTC persistence were discriminated in unsupervised hierarchical clustering of near-invariant housekeeper genes, with patterns compatible with higher cellular stress in BOECs with >11% PTC persistence. To test directionality, we used a HeLa reporter system to detect induction of activating transcription factor 4 (ATF4), which controls expression of stress-adaptive genes, and showed that ENG Q436X but not ENG R93X directly induced ATF4. AlphaFold accurately modeled relevant ENG domains, with AlphaMissense suggesting that readthrough substitutions would be benign for ENG R93X and other less rare ENG nonsense variants but more damaging for Q436X. We conclude that PTCs should be distinguished from other loss-of-function variants, PTC transcript levels increase in stressed cells, and readthrough proteins and mechanisms provide promising research avenues.


Subject(s)
Activin Receptors, Type II , Codon, Nonsense , Endoglin , Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Endoglin/genetics , Endoglin/metabolism , Activin Receptors, Type II/genetics , Smad4 Protein/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mutation , Male , Female , Nonsense Mediated mRNA Decay
6.
J Clin Med ; 12(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38137783

ABSTRACT

Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia that commonly results in bleeding but with frequent indications for therapeutic anticoagulation. Our aims were to advance the understanding of drug-specific intolerance and evaluate if there was an indication for pharmacogenomic testing. Genes encoding proteins involved in the absorption, distribution, metabolism, and excretion of warfarin, heparin, and direct oral anticoagulants (DOACs) apixaban, rivaroxaban, edoxaban, and dabigatran were identified and examined. Linkage disequilibrium with HHT genes was excluded, before variants within these genes were examined following whole genome sequencing of general and HHT populations. The 44 genes identified included 5/17 actionable pharmacogenes with guidelines. The 76,156 participants in the Genome Aggregation Database v3.1.2 had 28,446 variants, including 9668 missense substitutions and 1076 predicted loss-of-function (frameshift, nonsense, and consensus splice site) variants, i.e., approximately 1 in 7.9 individuals had a missense substitution, and 1 in 71 had a loss-of-function variant. Focusing on the 17 genes relevant to usually preferred DOACs, similar variant profiles were identified in HHT patients. With HHT patients at particular risk of haemorrhage when undergoing anticoagulant treatment, we explore how pre-emptive pharmacogenomic testing, alongside HHT gene testing, may prove beneficial in reducing the risk of bleeding and conclude that HHT patients are well placed to be at the vanguard of personalised prescribing.

7.
J Clin Med ; 12(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38002793

ABSTRACT

We read with interest the recent article by Killian et al. regarding the characteristics and treatment of brain vascular malformations (VMs) in children and adults with hereditary hemorrhagic telangiectasia (HHT) [...].

8.
Am J Hum Genet ; 110(11): 1903-1918, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37816352

ABSTRACT

Despite whole-genome sequencing (WGS), many cases of single-gene disorders remain unsolved, impeding diagnosis and preventative care for people whose disease-causing variants escape detection. Since early WGS data analytic steps prioritize protein-coding sequences, to simultaneously prioritize variants in non-coding regions rich in transcribed and critical regulatory sequences, we developed GROFFFY, an analytic tool that integrates coordinates for regions with experimental evidence of functionality. Applied to WGS data from solved and unsolved hereditary hemorrhagic telangiectasia (HHT) recruits to the 100,000 Genomes Project, GROFFFY-based filtration reduced the mean number of variants/DNA from 4,867,167 to 21,486, without deleting disease-causal variants. In three unsolved cases (two related), GROFFFY identified ultra-rare deletions within the 3' untranslated region (UTR) of the tumor suppressor SMAD4, where germline loss-of-function alleles cause combined HHT and colonic polyposis (MIM: 175050). Sited >5.4 kb distal to coding DNA, the deletions did not modify or generate microRNA binding sites, but instead disrupted the sequence context of the final cleavage and polyadenylation site necessary for protein production: By iFoldRNA, an AAUAAA-adjacent 16-nucleotide deletion brought the cleavage site into inaccessible neighboring secondary structures, while a 4-nucleotide deletion unfolded the downstream RNA polymerase II roadblock. SMAD4 RNA expression differed to control-derived RNA from resting and cycloheximide-stressed peripheral blood mononuclear cells. Patterns predicted the mutational site for an unrelated HHT/polyposis-affected individual, where a complex insertion was subsequently identified. In conclusion, we describe a functional rare variant type that impacts regulatory systems based on RNA polyadenylation. Extension of coding sequence-focused gene panels is required to capture these variants.


Subject(s)
Smad4 Protein , Telangiectasia, Hereditary Hemorrhagic , Humans , Base Sequence , DNA , Leukocytes, Mononuclear/pathology , Nucleotides , Polyadenylation/genetics , RNA , Smad4 Protein/genetics , Telangiectasia, Hereditary Hemorrhagic/genetics , Whole Genome Sequencing
9.
EJHaem ; 4(3): 602-611, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37601877

ABSTRACT

Hereditary haemorrhagic telangiectasia (HHT) can result in challenging anaemia and thrombosis phenotypes. Clinical presentations of HHT vary for relatives with identical casual mutations, suggesting other factors may modify severity. To examine objectively, we developed unsupervised machine learning algorithms to test whether haematological data at presentation could be categorised into sub-groupings and fitted to known biological factors. With ethical approval, we examined 10 complete blood count (CBC) variables, four iron index variables, four coagulation variables and eight iron/coagulation indices combined from 336 genotyped HHT patients (40% male, 60% female, 86.5% not using iron supplementation) at a single centre. T-SNE unsupervised, dimension reduction, machine learning algorithms assigned each high-dimensional datapoint to a location in a two-dimensional plane. k-Means clustering algorithms grouped into profiles, enabling visualisation and inter-profile comparisons of patients' clinical and genetic features. The unsupervised machine learning algorithms using t-SNE and k-Means identified two distinct CBC profiles, two iron profiles, four clotting profiles and three combined profiles. Validating the methodology, profiles for CBC or iron indices fitted expected patterns for haemorrhage. Distinct coagulation profiles displayed no association with age, sex, C-reactive protein, pulmonary arteriovenous malformations (AVMs), ENG/ACVRL1 genotype or epistaxis severity. The most distinct profiles were from t-SNE/k-Means analyses of combined iron-coagulation indices and mapped to three risk states - for venous thromboembolism in HHT; for ischaemic stroke attributed to paradoxical emboli through pulmonary AVMs in HHT; and for cerebral abscess attributed to odontogenic bacteremias in immunocompetent HHT patients with right-to-left shunting through pulmonary AVMs. In conclusion, unsupervised machine learning algorithms categorise HHT haematological indices into distinct, clinically relevant profiles which are independent of age, sex or HHT genotype. Further evaluation may inform prophylaxis and management for HHT patients' haemorrhagic and thrombotic phenotypes.

10.
J Clin Med ; 13(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38202257

ABSTRACT

Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia inherited as an autosomal dominant trait, due to a single heterozygous loss-of-function variant, usually in ACVRL1 (encoding activin receptor-like kinase 1 [ALK1]), ENG (encoding endoglin [CD105]), or SMAD4. In a consecutive single-centre series of 37 positive clinical genetic tests performed in 2021-2023, a skewed distribution pattern was noted, with 30 of 32 variants reported only once, but ACVRL1 c.1231C>T (p.Arg411Trp) identified as the disease-causal gene in five different HHT families. In the same centre's non-overlapping 1992-2020 series where 110/134 (82.1%) HHT-causal variants were reported only once, ACVRL1 c.1231C>T (p.Arg411Trp) was identified in nine further families. In a 14-country, four-continent HHT Mutation Database where 181/250 (72.4%) HHT-causal variants were reported only once, ACVRL1 c.1231C>T (p.Arg411Trp) was reported by 12 different laboratories, the adjacent ACVRL1 c.1232G>A (p.Arg411Gln) by 14, and ACVRL1 c.1120C>T (p.Arg374Trp) by 18. Unlike the majority of HHT-causal ACVRL1 variants, these encode ALK1 protein that reaches the endothelial cell surface but fails to signal. Six variants of this type were present in the three series and were reported 6.8-25.5 (mean 8.9) times more frequently than the other ACVRL1 missense variants (all p-values < 0.0039). Noting lower rates of myocardial infarction reported in HHT, we explore potential mechanisms, including a selective paradigm relevant to ALK1's role in the initiating event of atherosclerosis, where a plausible dominant negative effect of these specific variants can be proposed. In conclusion, there is an ~9-fold excess of kinase-inactive, cell surface-expressed ACVRL1/ALK1 pathogenic missense variants in HHT. The findings support further examination of differential clinical and cellular phenotypes by HHT causal gene molecular subtypes.

11.
medRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38196618

ABSTRACT

To discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following in silico triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with UCHL1 , and independent confirmatory evidence has recently been published for four more. We highlight a further seven compelling associations: hypertrophic cardiomyopathy with DYSF and SLC4A3 where both genes show high/specific heart expression and existing associations to skeletal dystrophies or short QT syndrome respectively; monogenic diabetes with UNC13A with a known role in the regulation of ß cells and a mouse model with impaired glucose tolerance; epilepsy with KCNQ1 where a mouse model shows seizures and the existing long QT syndrome association may be linked; early onset Parkinson's disease with RYR1 with existing links to tremor pathophysiology and a mouse model with neurological phenotypes; anterior segment ocular abnormalities associated with POMK showing expression in corneal cells and with a zebrafish model with developmental ocular abnormalities; and cystic kidney disease with COL4A3 showing high renal expression and prior evidence for a digenic or modifying role in renal disease. Confirmation of all 88 associations would lead to potential diagnoses in 456 molecularly undiagnosed cases within the 100KGP, as well as other rare disease patients worldwide, highlighting the clinical impact of a large-scale statistical approach to rare disease gene discovery.

12.
Eur J Med Genet ; 65(10): 104575, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35940549

ABSTRACT

Hereditary haemorrhagic telangiectasia (HHT) is a rare vascular multisystemic disease that leads to epistaxis, anaemia due to blood loss, and arteriovenous malformations (AVMs) in organs such as the lungs, liver and brain. HHT prevalence is estimated at 1/6000, i.e. around 85,000 European citizens, and is served by the European Reference Network for Rare Multisystemic Vascular Diseases (VASCERN). HHT treatments depend on clinical manifestations, and span multiple different medical, surgical and interventional disciplines. Separate to local treatments in the nose, in severe settings, intravenous bevacizumab has been proposed as treatment option, and the purpose of the current article is to assess the use of intravenous bevacizumab in patients with HHT in 2022 according to available data.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Bevacizumab/therapeutic use , Epistaxis/drug therapy , Humans , Rare Diseases , Telangiectasia, Hereditary Hemorrhagic/drug therapy
13.
Blood Adv ; 6(13): 3956-3969, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35316832

ABSTRACT

The abnormal vascular structures of hereditary hemorrhagic telangiectasia (HHT) often cause severe anemia due to recurrent hemorrhage, but HHT causal genes do not predict the severity of hematological complications. We tested for chance inheritance and clinical associations of rare deleterious variants in which loss-of-function causes bleeding or hemolytic disorders in the general population. In double-blinded analyses, all 104 patients with HHT from a single reference center recruited to the 100 000 Genomes Project were categorized on new MALO (more/as-expected/less/opposite) sub-phenotype severity scales, and whole genome sequencing data were tested for high impact variants in 75 HHT-independent genes encoding coagulation factors, or platelet, hemoglobin, erythrocyte enzyme, and erythrocyte membrane constituents. Rare variants (all gnomAD allele frequencies <0.003) were identified in 56 (75%) of these 75 HHT-unrelated genes. Deleteriousness assignments by Combined Annotation Dependent Depletion (CADD) scores >15 were supported by gene-level mutation significance cutoff scores. CADD >15 variants were identified in 38/104 (36.5%) patients with HHT, found for 1 in 10 patients within platelet genes; 1 in 8 within coagulation genes; and 1 in 4 within erythrocyte hemolytic genes. In blinded analyses, patients with greater hemorrhagic severity that had been attributed solely to HHT vessels had more CADD-deleterious variants in platelet (Spearman ρ = 0.25; P = .008) and coagulation (Spearman ρ = 0.21; P = .024) genes. However, the HHT cohort had 60% fewer deleterious variants in platelet and coagulation genes than expected (Mann-Whitney test P = .021). In conclusion, patients with HHT commonly have rare variants in genes of relevance to their phenotype, offering new therapeutic targets and opportunities for informed, personalized medicine strategies.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Activin Receptors, Type II/genetics , DNA , Genetic Variation , Hemorrhage , Humans , Mutation , Phenotype , Telangiectasia, Hereditary Hemorrhagic/complications , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Whole Genome Sequencing
14.
Thorax ; 77(6): 628-630, 2022 06.
Article in English | MEDLINE | ID: mdl-35165143

ABSTRACT

Pulmonary arteriovenous malformations (PAVMs) result in preventable complications demanding specialty care. Underlying hereditary haemorrhagic telangiectasia (HHT) can be identified by genetic testing, if the diagnosis is considered. Retrospectively reviewing 152 unrelated adults with genetically confirmed HHT due to ACVRL1, ENG or SMAD4, we found that only 104/152 (68%) met a clinical diagnosis of HHT with three Curaçao criteria. The genetic diagnostic rate was similar for patients with three (104/137, 76%) or one to two (48/71, 68%; p=0.25) criteria. Of 83 unrelated probands with PAVM(s) and genetically-confirmed HHT, 20/83 (24%) had few, if any, features of HHT. Enhanced clinical suspicion, as well as HHT genetic testing, is recommended if one or more PAVMs are present.


Subject(s)
Arteriovenous Malformations , Pulmonary Veins , Telangiectasia, Hereditary Hemorrhagic , Activin Receptors, Type II/genetics , Adult , Arteriovenous Fistula , Arteriovenous Malformations/complications , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics , Humans , Pulmonary Artery/abnormalities , Pulmonary Veins/abnormalities , Retrospective Studies , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics
15.
Am J Med Genet A ; 188(3): 959-964, 2022 03.
Article in English | MEDLINE | ID: mdl-34904380

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant multisystemic vascular dysplasia, characterized by arteriovenous malformations (AVMs), mucocutaneous telangiectasia and nosebleeds. HHT is caused by a heterozygous null allele in ACVRL1, ENG, or SMAD4, which encode proteins mediating bone morphogenetic protein (BMP) signaling. Several missense and stop-gain variants identified in GDF2 (encoding BMP9) have been reported to cause a vascular anomaly syndrome similar to HHT, however none of these patients met diagnostic criteria for HHT. HHT families from UK NHS Genomic Medicine Centres were recruited to the Genomics England 100,000 Genomes Project. Whole genome sequencing and tiering protocols identified a novel, heterozygous GDF2 sequence variant in all three affected members of one HHT family who had previously screened negative for ACVRL1, ENG, and SMAD4. All three had nosebleeds and typical HHT telangiectasia, and the proband also had severe pulmonary AVMs from childhood. In vitro studies showed the mutant construct expressed the proprotein but lacked active mature BMP9 dimer, suggesting the mutation disrupts correct cleavage of the protein. Plasma BMP9 levels in the patients were significantly lower than controls. In conclusion, we propose that this heterozygous GDF2 variant is a rare cause of HHT associated with pulmonary AVMs.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Activin Receptors, Type II/genetics , Arteriovenous Fistula , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics , Child , Endoglin/genetics , Endoglin/metabolism , Epistaxis , Growth Differentiation Factor 2/genetics , Humans , Mutation , Pulmonary Artery/abnormalities , Pulmonary Veins/abnormalities , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology
16.
Neurology ; 98(5): 188-198, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34880092

ABSTRACT

The potential of covert pulmonary arteriovenous malformations (PAVMs) to cause early onset, preventable ischemic strokes is not well known to neurologists. This is evident by their lack of mention in serial American Heart Association/American Stroke Association (AHA/ASA) Guidelines and the single case report biased literature of recent years. We performed PubMed and Cochrane database searches for major studies on ischemic stroke and PAVMs published from January 1, 1974, through April 3, 2021. This identified 24 major observational studies, 3 societal guidelines, 1 nationwide analysis, 3 systematic reviews, 21 other review/opinion articles, and 18 recent (2017-2021) case reports/series that were synthesized. Key points are that patients with PAVMs have ischemic stroke a decade earlier than routine stroke, losing 9 extra healthy life-years per patient in the recent US nationwide analysis (2005-2014). Large-scale thoracic CT screens of the general population in Japan estimate PAVM prevalence to be 38/100,000 (95% confidence interval 18-76), with ischemic stroke rates exceeding 10% across PAVM series dating back to the 1950s, with most PAVMs remaining undiagnosed until the time of clinical stroke. Notably, the rate of PAVM diagnoses doubled in US ischemic stroke hospitalizations between 2005 and 2014. The burden of silent cerebral infarction approximates to twice that of clinical stroke. More than 80% of patients have underlying hereditary hemorrhagic telangiectasia. The predominant stroke mechanism is paradoxical embolization of platelet-rich emboli, with iron deficiency emerging as a modifiable risk factor. PAVM-related ischemic strokes may be cortical or subcortical, but very rarely cause proximal large vessel occlusions. Single antiplatelet therapy may be effective for secondary stroke prophylaxis, with dual antiplatelet or anticoagulation therapy requiring nuanced risk-benefit analysis given their risk of aggravating iron deficiency. This review summarizes the ischemic stroke burden from PAVMs, the implicative pathophysiology, and relevant diagnostic and treatment overviews to facilitate future incorporation into AHA/ASA guidelines.


Subject(s)
Arteriovenous Malformations , Ischemic Stroke , Pulmonary Veins , Telangiectasia, Hereditary Hemorrhagic , Arteriovenous Malformations/complications , Arteriovenous Malformations/epidemiology , Humans , Observational Studies as Topic , Pulmonary Artery/abnormalities , Pulmonary Veins/abnormalities , Telangiectasia, Hereditary Hemorrhagic/complications , United States
17.
Eur J Med Genet ; 64(10): 104312, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34411772

ABSTRACT

Recent guidance suggested modified DNA variant pathogenicity assignments based on genome-wide allele rarity. Different a priori probabilities of pathogenicity operate where patients already have clinical diagnoses, and are found to have a very rare variant in a gene known to cause their disease, compared to predictive testing of a clinically unaffected individual. We tested new recommendations from the ClinGen Sequence Variant Interpretation Working Group for ClinVar-listed, loss-of-function variants meeting the very strong evidence of pathogenicity criterion [PVS1] in genes for 3 specific diseases where causal gene identification can modify clinical care of an individual- Von Willebrand disease, cystic fibrosis and hereditary haemorrhagic telangiectasia. Across these diseases, current rules leave 20/1,278 (1.6%) of loss-of-function variants as variants of uncertain significance (VUS that may not be reported to clinicians), and 207/1,278 (17.2%) as likely pathogenic. Applying the new ClinGen rule enabling PVS1 and the allele rarity criterion PM2 to delineate likely pathogenicity still left 8/1,278 (0.9%) as VUS (reflecting non-PVS1 calls by the submitters), and the majority of null alleles meeting PVS1 as merely likely pathogenic. We favour an approach whereby, for PVS1 variants in patients who personally meet the phenotypic PP4 criterion for a disease where casual variants are commonly family-specific, that PM2 is upgraded to permit a pathogenic call. Of 1,278 ClinVar-listed frameshift, nonsense and canonical splice site variants that met PVS1 in the 3 conditions, 16.0% (204/1,278) would be newly designated as pathogenic, avoiding misinterpretation outside of clinical genetics communities. We suggest further discussion around variant assessment across different clinical applications, potentially guided by PP4 alerts to distinguish personal versus family phenotypic history.


Subject(s)
Gene Frequency , Genetic Testing/standards , Phenotype , Practice Guidelines as Topic , Consensus Development Conferences as Topic , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Genetic Testing/methods , Humans , Mutation , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , von Willebrand Diseases/diagnosis , von Willebrand Diseases/genetics
18.
Stroke ; 52(7): e311-e315, 2021 07.
Article in English | MEDLINE | ID: mdl-34082575

ABSTRACT

BACKGROUND AND PURPOSE: Pulmonary arteriovenous fistulas (PAVFs) are a treatable cause of acute ischemic stroke (AIS), not mentioned in current American Heart/Stroke Association guidelines. PAVFs are recognized as an important complication of hereditary hemorrhagic telangiectasia. METHODS: The prevalence of PAVF and hereditary hemorrhagic telangiectasia among patients admitted with AIS in the United States (2005-2014) was retrospectively studied, utilizing the Nationwide Inpatient Sample database. Clinical factors, morbidity, mortality, and management were compared in AIS patients with and without PAVF/hereditary hemorrhagic telangiectasia. RESULTS: Of 4 271 910 patients admitted with AIS, 822 (0.02%) were diagnosed with PAVF. Among them, 106 of 822 (12.9%) were diagnosed with hereditary hemorrhagic telangiectasia. The prevalence of PAVF per million AIS admissions rose from 197 in 2005 to 368 in 2014 (Ptrend, 0.026). Patients with PAVF were younger than AIS patients without PAVF (median age, 57.5 versus 72.5 years), had lower age-adjusted inpatient morbidity (defined as any discharge other than home; 39.6% versus 46.9%), and had lower in-hospital case fatality rates (1.8% versus 5.1%). Multivariate analyses identified the following as independent risk markers (odds ratio [95% CI]) for AIS in patients with PAVF: hypoxemia (8.4 [6.3-11.2]), pulmonary hemorrhage (7.9 [4.1-15.1]), pulmonary hypertension (4.3 [4.1-15.1]), patent foramen ovale (4.2 [3.5-5.1]), epistaxis (3.7 [2.1-6.8]), venous thrombosis (2.6 [1.9-3.6]), and iron deficiency anemia (2 [1.5-2.7]). Patients with and without PAVF received intravenous thrombolytics at a similar rate (5.9% versus 5.8%), but those with PAVF did not receive mechanical thrombectomy (0% versus 0.7%). CONCLUSIONS: Pulmonary arteriovenous fistula-related ischemic stroke represents an important younger demographic with a unique set of stroke risk markers, including treatable conditions such as causal PAVFs and iron deficiency anemia.


Subject(s)
Arteriovenous Fistula/diagnosis , Arteriovenous Fistula/epidemiology , Ischemic Stroke/diagnosis , Ischemic Stroke/epidemiology , Pulmonary Artery/abnormalities , Pulmonary Veins/abnormalities , Adult , Aged , Aged, 80 and over , Arteriovenous Fistula/therapy , Female , Fibrinolytic Agents/administration & dosage , Humans , Ischemic Stroke/therapy , Male , Middle Aged , Retrospective Studies , Thrombolytic Therapy/trends
19.
Braz. j. infect. dis ; 24(5): 412-421, Sept.-Oct. 2020. tab, graf
Article in English | LILACS, Coleciona SUS | ID: biblio-1142550

ABSTRACT

Abstract Introduction Our goal was to evaluate if traffic-light driven personalized care for COVID-19 was associated with improved survival in acute hospital settings. Methods Discharge outcomes were evaluated before and after prospective implementation of a real-time dashboard with feedback to ward-based clinicians. Thromboembolism categories were "medium-risk" (D-dimer >1000 ng/mL or CRP >200 mg/L); "high-risk" (D-dimer >3000 ng/mL or CRP >250 mg/L) or "suspected" (D-dimer >5000 ng/mL). Cytokine storm risk was categorized by ferritin. Results 939/1039 COVID-19 positive patients (median age 67 years, 563/939 (60%) male) completed hospital encounters to death or discharge by 21st May 2020. Thromboembolism flag criteria were reached by 568/939 (60.5%), including 238/275 (86.6%) of the patients who died, and 330/664 (49.7%) of the patients who survived to discharge, p < 0.0001. Cytokine storm flag criteria were reached by 212 (22.6%) of admissions, including 80/275 (29.1%) of the patients who died, and 132/664 (19.9%) of the patients who survived, p < 0.0001. The maximum thromboembolism flag discriminated completed encounter mortality (no flag: 37/371 [9.97%] died; medium-risk: 68/239 [28.5%]; high-risk: 105/205 [51.2%]; and suspected thromboembolism: 65/124 [52.4%], p < 0.0001). Flag criteria were reached by 535 consecutive COVID-19 positive patients whose hospital encounter completed before traffic-light introduction: 173/535 (32.3% [95% confidence intervals 28.0, 36.0]) died. For the 200 consecutive admissions after implementation of real-time traffic light flags, 46/200 (23.0% [95% confidence intervals 17.1, 28.9]) died, p = 0.013. Adjusted for age and sex, the probability of death was 0.33 (95% confidence intervals 0.30, 0.37) before traffic light implementation, 0.22 (0.17, 0.27) after implementation, p < 0.001. In subgroup analyses, older patients, males, and patients with hypertension (p ≤ 0.01), and/or diabetes (p = 0.05) derived the greatest benefit from admission under the traffic light system. Conclusion Personalized early interventions were associated with a 33% reduction in early mortality. We suggest benefit predominantly resulted from early triggers to review/enhance anticoagulation management, without exposing lower-risk patients to potential risks of full anticoagulation therapy.


Subject(s)
Aged , Humans , Male , Pneumonia, Viral , Thromboembolism , Coronavirus Infections , Pandemics , Pneumonia, Viral/epidemiology , Prospective Studies , Cytokines , Coronavirus Infections/epidemiology , Betacoronavirus , SARS-CoV-2 , COVID-19 , Inpatients
20.
Emerg Med J ; 37(10): 630-636, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32948623

ABSTRACT

Common causes of death in COVID-19 due to SARS-CoV-2 include thromboembolic disease, cytokine storm and adult respiratory distress syndrome (ARDS). Our aim was to develop a system for early detection of disease pattern in the emergency department (ED) that would enhance opportunities for personalised accelerated care to prevent disease progression. A single Trust's COVID-19 response control command was established, and a reporting team with bioinformaticians was deployed to develop a real-time traffic light system to support clinical and operational teams. An attempt was made to identify predictive elements for thromboembolism, cytokine storm and ARDS based on physiological measurements and blood tests, and to communicate to clinicians managing the patient, initially via single consultants. The input variables were age, sex, and first recorded blood pressure, respiratory rate, temperature, heart rate, indices of oxygenation and C-reactive protein. Early admissions were used to refine the predictors used in the traffic lights. Of 923 consecutive patients who tested COVID-19 positive, 592 (64%) flagged at risk for thromboembolism, 241/923 (26%) for cytokine storm and 361/923 (39%) for ARDS. Thromboembolism and cytokine storm flags were met in the ED for 342 (37.1%) patients. Of the 318 (34.5%) patients receiving thromboembolism flags, 49 (5.3% of all patients) were for suspected thromboembolism, 103 (11.1%) were high-risk and 166 (18.0%) were medium-risk. Of the 89 (9.6%) who received a cytokine storm flag from the ED, 18 (2.0% of all patients) were for suspected cytokine storm, 13 (1.4%) were high-risk and 58 (6.3%) were medium-risk. Males were more likely to receive a specific traffic light flag. In conclusion, ED predictors were used to identify high proportions of COVID-19 admissions at risk of clinical deterioration due to severity of disease, enabling accelerated care targeted to those more likely to benefit. Larger prospective studies are encouraged.


Subject(s)
Coronavirus Infections/therapy , Emergency Medical Tags/trends , Emergency Service, Hospital/statistics & numerical data , Hospital Mortality/trends , Patient Care Team/organization & administration , Pneumonia, Viral/therapy , Thromboembolism/diagnosis , Adult , Age Factors , Aged , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Disease Progression , Female , Hospitals, University , Humans , Male , Middle Aged , Pandemics , Patient Selection , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Precision Medicine/statistics & numerical data , Risk Assessment , Severity of Illness Index , Sex Factors , Thromboembolism/epidemiology , Thromboembolism/therapy , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...