Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 103(5-1): 053207, 2021 May.
Article in English | MEDLINE | ID: mdl-34134339

ABSTRACT

We report on the increase in the accelerated electron number and energy using compound parabolic concentrator (CPC) targets from a short-pulse (∼150 fs), high-intensity (>10^{18} W/cm^{2}), and high-contrast (∼10^{8}) laser-solid interaction. We report on experimental measurements using CPC targets where the hot-electron temperature is enhanced up to ∼9 times when compared to planar targets. The temperature measured from the CPC target is 〈T_{e}〉=4.4±1.3 MeV. Using hydrodynamic and particle in cell simulations, we identify the primary source of this temperature enhancement is the intensity increase caused by the CPC geometry that focuses the laser, reducing the focal spot and therefore increasing the intensity of the laser-solid interaction, which is also consistent with analytic expectations for the geometrical focusing.

2.
Appl Opt ; 50(4): 554-61, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21283247

ABSTRACT

In order to achieve the highest intensities possible with the short-pulse Advanced Radiographic Capability beamline at the National Ignition Facility (NIF), it will be necessary to phase the individual ARC apertures. This is made especially challenging because the design of ARC results in two laser beams with different dispersions sharing the same NIF aperture. The extent to which two beams with different dispersions can be phased with each other has been an open question. This paper presents results of an analysis showing that the different dispersion values that will be encountered by the shared-aperture beams will not preclude the phasing of the two beams. We also highlight a situation in which dispersion mismatch will prevent good phasing between apertures, and discuss the limits to which higher-order dispersion values may differ before the beams begin to dephase.

3.
Opt Lett ; 35(13): 2224-6, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20596201

ABSTRACT

We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

4.
Opt Lett ; 35(14): 2478-80, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20634869

ABSTRACT

We demonstrate a compact hyperdispersion stretcher and compressor pair that permit chirped-pulse amplification in Nd:YAG. We generate 750 mJ, 0.2 nm FWHM, 10 Hz pulses recompressed to an 8 ps near-transform-limited duration. The dispersion-matched pulse compressor and stretcher impart a chirp of 7300 ps/nm, in a 3 m x 1 m footprint.

5.
Opt Lett ; 35(3): 354-6, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20125719

ABSTRACT

What we believe to be the first demonstration of isotope-specific detection of a low-Z and low density object shielded by a high-Z and high-density material using monoenergetic gamma rays is reported. The isotope-specific detection of LiH shielded by Pb and Al is accomplished using the nuclear resonance fluorescence line of L7i at 478 keV. Resonant photons are produced via laser-based Compton scattering. The detection techniques are general, and the confidence level obtained is shown to be superior to that yielded by conventional x-ray and gamma-ray techniques in these situations.

6.
Opt Express ; 17(19): 16696-709, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19770884

ABSTRACT

Implementing the capability to perform fast ignition experiments, as well as, radiography experiments on the National Ignition Facility (NIF) places stringent requirements on the control of each of the beam's pointing, intra-beam phasing and overall wave-front quality. In this article experimental results are presented which were taken on an interferometric adaptive optics testbed that was designed and built to test the capabilities of such a system to control phasing, pointing and higher order beam aberrations. These measurements included quantification of the reduction in Strehl ratio incurred when using the MEMS device to correct for pointing errors in the system. The interferometric adaptive optics system achieved a Strehl ratio of 0.83 when correcting for a piston, tip/tilt error between two adjacent rectangular apertures, the geometry expected for the National ignition Facility. The interferometric adaptive optics system also achieved a Strehl ratio of 0.66 when used to correct for a phase plate aberration of similar magnitude as expected from simulations of the ARC beam line. All of these corrections included measuring both the upstream and downstream aberrations in the testbed and applying the sum of these two measurements in open-loop to the MEMS deformable mirror.

7.
Phys Rev Lett ; 103(21): 215006, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-20366048

ABSTRACT

A laser wakefield acceleration study has been performed in the matched, self-guided, blowout regime producing 720 +/- 50 MeV quasimonoenergetic electrons with a divergence Deltatheta_{FWHM} of 2.85 +/- 0.15 mrad using a 10 J, 60 fs 0.8 microm laser. While maintaining a nearly constant plasma density (3 x 10{18} cm{-3}), the energy gain increased from 75 to 720 MeV when the plasma length was increased from 3 to 8 mm. Absolute charge measurements indicate that self-injection of electrons occurs when the laser power P exceeds 3 times the critical power P{cr} for relativistic self-focusing and saturates around 100 pC for P/P{cr} > 5. The results are compared with both analytical scalings and full 3D particle-in-cell simulations.

8.
Opt Express ; 16(8): 5813-21, 2008 Apr 14.
Article in English | MEDLINE | ID: mdl-18542692

ABSTRACT

We demonstrate increased peak power from an Yb fiber CPA system operating with strong self-phase modulation by shaping the spectral-phase of the input pulses. An adaptive control loop used feedback from the output autocorrelation. We investigated pre-compensation of both SPM phase distortion at high energies, and residual dispersion from mismatched stretcher/compressor technologies at low energies. Phase shaping resulted in improved pulse quality. When using a bulk grating stretcher, shaping increased the autocorrelation peak by a factor of 2.9, and with a fiber stretcher, shaping increased the autocorrelation peak by a factor of 3.4. High-quality 800 fs, 65 microJ recompressed pulses were produced. This technique could benefit a wide variety of fiber amplifier systems and is self-optimising for operation at both low and high pulse energies.


Subject(s)
Amplifiers, Electronic , Computer-Aided Design , Fiber Optic Technology/instrumentation , Lasers , Models, Theoretical , Signal Processing, Computer-Assisted/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis
9.
Phys Rev Lett ; 100(12): 125001, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18517875

ABSTRACT

Inertially confined, ignited thermonuclear D-T plasmas will produce intense blackbody radiation at temperatures T greater, similar20 keV; it is shown that the injection of GeV electrons into the burning core can efficiently generate high-energy Compton scattering photons. Moreover, the spectrum scattered in a small solid angle can be remarkably monochromatic, due to kinematic pileup; a peak brightness in excess of 10;{30} photons/(mm(2) mrad(2) s 0.1% bandwidth) is predicted. These results are discussed within the context of the Schwinger field and the Sunyaev-Zel'dovich effect.

10.
Phys Rev Lett ; 87(23): 237401, 2001 Dec 03.
Article in English | MEDLINE | ID: mdl-11736474

ABSTRACT

Femtosecond x-ray and visible pulses were used to probe structural and electronic dynamics during an optically driven, solid-solid phase transition in VO(2). For high interband electronic excitation (approximately 5 x 10(21) cm(-3)), a subpicosecond transformation into the high-T, rutile phase of the material is observed, simultaneous with an insulator-to-metal transition. The fast time scale observed suggests that, in this regime, the structural transition may not be thermally initiated.

11.
Phys Rev Lett ; 87(26): 263002, 2001 Dec 24.
Article in English | MEDLINE | ID: mdl-11800832

ABSTRACT

Ultrafast ionization dynamics of femtosecond laser-irradiated noble and simple diatomic gases were studied using a novel two-color time-domain technique which eliminated significant complications seen in past experiments. Ultrafast depletion of the probing laser pulse was observed strictly coincident with the ionization front and attributed to a previously unobserved nonlinear frequency mixing via the transverse plasma current [F. Brunel, J. Opt. Soc. Am. B 7, 52 (1990)]. Good quantitative agreement of the measured single-atom ionization rates with Ammosov-Delone-Krainov rates was found, except for O (2) which showed a 200x smaller rate.

12.
Phys Rev Lett ; 85(3): 586-9, 2000 Jul 17.
Article in English | MEDLINE | ID: mdl-10991346

ABSTRACT

Damping of impulsively generated coherent acoustic oscillations in a femtosecond laser-heated thin germanium film is measured as a function of fluence by means of ultrafast x-ray diffraction. By simultaneously measuring picosecond strain dynamics in the film and in the unexcited silicon substrate, we separate anharmonic damping from acoustic transmission through the buried interface. The measured damping rate and its dependence on the calculated temperature of the thermal bath is consistent with estimated four-body, elastic dephasing times (T2) for 7-GHz longitudinal acoustic phonons in germanium.

13.
Science ; 286(5443): 1340-2, 1999 Nov 12.
Article in English | MEDLINE | ID: mdl-10558985

ABSTRACT

Using ultrafast, time-resolved, 1.54 angstrom x-ray diffraction, thermal and ultrafast nonthermal melting of germanium, involving passage through nonequilibrium extreme states of matter, was observed. Such ultrafast, optical-pump, x-ray diffraction probe measurements provide a way to study many other transient processes in physics, chemistry, and biology, including direct observation of the atomic motion by which many solid-state processes and chemical and biochemical reactions take place.


Subject(s)
Germanium/chemistry , X-Ray Diffraction , Biochemistry/methods , Crystallization , Lasers , Temperature
14.
Opt Lett ; 24(4): 241-3, 1999 Feb 15.
Article in English | MEDLINE | ID: mdl-18071467

ABSTRACT

The saturation properties of terahertz emission from biased, large-aperture photoconductors excited by trains of amplified femtosecond optical pulses are presented. A direct comparison is made of the multiple-pulse saturation properties of terahertz emission from semi-insulating GaAs and low-temperature-grown GaAs emitters with different carrier lifetimes. When the carrier lifetime is less than or comparable with the interpulse spacing, a significant enhancement of the narrow-band terahertz output is observed. The enhancement is not observed for emitters with long carrier lifetimes, consistent with the results of a previously derived saturation theory [Opt. Lett. 18, 1340 (1993)].

15.
Appl Opt ; 37(22): 5302-5, 1998 Aug 01.
Article in English | MEDLINE | ID: mdl-18286010

ABSTRACT

We demonstrate a novel, Michelson-based, ultrafast multiplexer with a throughput approaching 100% for a polarization-multiplexed train and 50% for a linearly polarized train, which is compatible with a high-energy pulse train and shaped-pulse generation. The interpulse spacings in the resultant 2(n)-pulse train can be adjusted continuously from multinanoseconds through zero. Using this interferometer, we also demonstrate generation of a 16-pulse train of terahertz pulses.

16.
Opt Lett ; 22(9): 624-6, 1997 May 01.
Article in English | MEDLINE | ID: mdl-18185611

ABSTRACT

We demonstrate a powerful new tool for real-time single-shot imaging of ultrafast phase shifts based on multipulse interferometric frequency-resolved optical gating that can directly measure and display ultrafast-time-scale phase shifts without computation. In addition, this technique can, with the application of interferogram analysis and iterative phase-retrievial techniques, recover the intensity and phase of three pulses in a single shot and exhibits a linear sensitivity to the pulse field in the wings.

SELECTION OF CITATIONS
SEARCH DETAIL
...