Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 53(12): 7155-7162, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31050415

ABSTRACT

Shale gas pipeline development can have negative environmental impacts, including adverse effects on species and ecosystems through habitat degradation and loss. From a societal perspective, pipeline development planning processes should account for such externalities. We develop a multiobjective binary integer-programming model, called the Multi Objective Pipeline Siting (MOPS) model, to incorporate habitat externalities into pipeline development and to estimate the trade-offs between pipeline development costs and habitat impacts. We demonstrate the utility of the model using an application from Bradford and Susquehanna counties in northeastern Pennsylvania. We find that significant habitat impacts can be avoided for relatively low cost, but the avoidance of the additional habitat impacts becomes gradually and increasingly costly. For example, 10% of the habitat impacts can be avoided at less than a two percent pipeline cost increase relative to a configuration that ignores habitat impacts. MOPS or a similar model could be integrated into the pipeline siting and permitting process so oil and gas companies, communities, and states can identify cost-effective options for habitat conservation near shale gas development.


Subject(s)
Ecosystem , Natural Gas , Conservation of Natural Resources , Pennsylvania
2.
Sci Adv ; 4(11): eaat1869, 2018 11.
Article in English | MEDLINE | ID: mdl-30443593

ABSTRACT

Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)-21 conservation, restoration, and improved land management interventions on natural and agricultural lands-to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year-1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year-1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.

3.
Proc Natl Acad Sci U S A ; 114(44): 11645-11650, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078344

ABSTRACT

Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO2 equivalent (PgCO2e) y-1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y-1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e-1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2-1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

4.
Environ Sci Technol ; 50(6): 2830-6, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26871484

ABSTRACT

This study estimates the economic value of an increase in ecosystem services attributable to the reduced acidification expected from more stringent air pollution policy. By integrating a detailed biogeochemical model that projects future ecological recovery with economic methods that measure preferences for specific ecological improvements, we estimate the economic value of ecological benefits from new air pollution policies in the Southern Appalachian ecosystem. Our results indicate that these policies generate aggregate benefits of about $3.7 billion, or about $16 per year per household in the region. The study provides currently missing information about the ecological benefits from air pollution policies that is needed to evaluate such policies comprehensively. More broadly, the study also illustrates how integrated biogeochemical and economic assessments of multidimensional ecosystems can evaluate the relative benefits of different policy options that vary by scale and across ecosystem attributes.


Subject(s)
Conservation of Natural Resources/methods , Models, Theoretical , Policy Making , Appalachian Region , Conservation of Natural Resources/economics , Ecosystem , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...