Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
mSystems ; 9(5): e0008324, 2024 May 16.
Article En | MEDLINE | ID: mdl-38647296

Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.


Snow , Snow/virology , Snow/microbiology , British Columbia , Bacteria/genetics , Bacteria/virology , Bacteria/isolation & purification , Eutrophication , Genome, Viral/genetics , Bacteriophages/genetics , Bacteriophages/isolation & purification , Rhodophyta/virology , Viruses/genetics , Viruses/isolation & purification , Viruses/classification
2.
Nat Rev Microbiol ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438489

Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.

3.
Am J Med Genet A ; 194(2): 328-336, 2024 Feb.
Article En | MEDLINE | ID: mdl-37846940

Mesomelic skeletal dysplasia is a heterogeneous group of skeletal disorders that has grown since the molecular basis of these conditions is in the process of research and discovery. Here, we report a Brazilian family with eight affected members over three generations with a phenotype similar to mesomelic Kantaputra dysplasia. This family presents marked shortening of the upper limbs with hypotrophy of the lower limbs and clubfeet without synostosis. Array-based CNV analysis and exome sequencing of four family members failed to show any region or gene candidate. Interestingly, males were more severely affected than females in this family, suggesting that gender differences could play a role in the phenotypic expressivity of this condition.


Gonadal Dysgenesis , Osteochondrodysplasias , Male , Female , Humans , Sex Factors , Osteochondrodysplasias/genetics , Family , Phenotype
4.
Genet Mol Biol ; 46(3 Suppl 1): e20230126, 2023.
Article En | MEDLINE | ID: mdl-38091267

Spinal muscular atrophy (SMA) is considered one of the most common autosomal recessive disorders, with an estimated incidence of 1 in 10,000 live births. Testing for SMA has been recommended for inclusion in neonatal screening (NBS) panels since there are several therapies available and there is evidence of greater efficacy when introduced in the pre/early symptomatic phases. In Brazil, the National Neonatal Screening Program tests for six diseases, with a new law issued in 2021 stating that it should incorporate more diseases, including SMA. In the present study, dried blood spot (DBS) samples collected by the Reference Services of Neonatal Screening of RS and SP, to perform the conventional test were also screened for SMA, using real-time PCR, with SALSA MC002 technique. A total of 40,000 samples were analyzed, enabling the identification of four positive cases of SMA, that were confirmed by MLPA. Considering our sampling, Brazil seems to have an incidence comparable to the described in other regions. This work demonstrated that the use of the MC002 technique in samples routinely collected for the conventional NBS program is suitable to screen for SMA in our conditions and can be included in the expansion of the neonatal screening programs.

5.
Microbiome ; 11(1): 118, 2023 05 27.
Article En | MEDLINE | ID: mdl-37237317

BACKGROUND: Viruses play important roles in the ocean's biogeochemical cycles. Yet, deep ocean viruses are one of the most under-explored fractions of the global biosphere. Little is known about the environmental factors that control the composition and functioning of their communities or how they interact with their free-living or particle-attached microbial hosts. RESULTS: We analysed 58 viral communities associated with size-fractionated free-living (0.2-0.8 µm) and particle-attached (0.8-20 µm) cellular metagenomes from bathypelagic (2150-4018 m deep) microbiomes obtained during the Malaspina expedition. These metagenomes yielded 6631 viral sequences, 91% of which were novel, and 67 represented high-quality genomes. Taxonomic classification assigned 53% of the viral sequences to families of tailed viruses from the order Caudovirales. Computational host prediction associated 886 viral sequences to dominant members of the deep ocean microbiome, such as Alphaproteobacteria (284), Gammaproteobacteria (241), SAR324 (23), Marinisomatota (39), and Chloroflexota (61). Free-living and particle-attached viral communities had markedly distinct taxonomic composition, host prevalence, and auxiliary metabolic gene content, which led to the discovery of novel viral-encoded metabolic genes involved in the folate and nucleotide metabolisms. Water mass age emerged as an important factor driving viral community composition. We postulated this was due to changes in quality and concentration of dissolved organic matter acting on the host communities, leading to an increase of viral auxiliary metabolic genes associated with energy metabolism among older water masses. CONCLUSIONS: These results shed light on the mechanisms by which environmental gradients of deep ocean ecosystems structure the composition and functioning of free-living and particle-attached viral communities. Video Abstract.


Microbiota , Viruses , Seawater/microbiology , Water , Genes, Viral , Viruses/genetics , Microbiota/genetics , Oceans and Seas
6.
Sci Total Environ ; 891: 164465, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37247740

Microbes play a central role in coral reef health. However, the relative importance of physical-chemical and biological processes in the control of microbial biomass are unknown. Here, we applied machine learning to analyze a large dataset of biological, physical, and chemical parameters (N = 665 coral reef seawater samples) to understand the factors that modulate microbial abundance in the water of Abrolhos reefs, the largest and richest coral reefs of the Southwest Atlantic. Random Forest (RF) and Boosted Regression Tree (BRT) models indicated that hydrodynamic forcing, Dissolved Organic Carbon (DOC), and Total Nitrogen (TN) were the most important predictors of microbial abundance. The possible cumulative effects of higher temperatures, longer seawater residence time, higher nutrient concentration, and lower coral and fish biomass observed in coastal reefs resulted in higher microbial abundance, potentially impacting coral resilience against stressors.


Anthozoa , Coral Reefs , Animals , Biomass , Hot Temperature , Machine Learning
7.
BMC Biol ; 21(1): 77, 2023 04 11.
Article En | MEDLINE | ID: mdl-37038111

BACKGROUND: Predation pressure and herbivory exert cascading effects on coral reef health and stability. However, the extent of these cascading effects can vary considerably across space and time. This variability is likely a result of the complex interactions between coral reefs' biotic and abiotic dimensions. A major biological component that has been poorly integrated into the reefs' trophic studies is the microbial community, despite its role in coral death and bleaching susceptibility. Viruses that infect bacteria can control microbial densities and may positively affect coral health by controlling microbialization. We hypothesize that viral predation of bacteria has analogous effects to the top-down pressure of macroorganisms on the trophic structure and reef health. RESULTS: Here, we investigated the relationships between live coral cover and viruses, bacteria, benthic algae, fish biomass, and water chemistry in 110 reefs spanning inhabited and uninhabited islands and atolls across the Pacific Ocean. Statistical learning showed that the abundance of turf algae, viruses, and bacteria, in that order, were the variables best predicting the variance in coral cover. While fish biomass was not a strong predictor of coral cover, the relationship between fish and corals became apparent when analyzed in the context of viral predation: high coral cover (> 50%) occurred on reefs with a combination of high predator fish biomass (sum of sharks and piscivores > 200 g m-2) and high virus-to-bacteria ratios (> 10), an indicator of viral predation pressure. However, these relationships were non-linear, with reefs at the higher and lower ends of the coral cover continuum displaying a narrow combination of abiotic and biotic variables, while reefs at intermediate coral cover showed a wider range of parameter combinations. CONCLUSIONS: The results presented here support the hypothesis that viral predation of bacteria is associated with high coral cover and, thus, coral health and stability. We propose that combined predation pressures from fishes and viruses control energy fluxes, inhibiting the detrimental accumulation of ecosystem energy in the microbial food web.


Anthozoa , Bacteria , Coral Reefs , Fishes , Food Chain , Predatory Behavior , Anthozoa/microbiology , Anthozoa/virology , Animals , Fishes/physiology , Pacific Ocean , Biomass , Islands , Bacteria/virology , Seawater/chemistry , Human Activities , Statistics, Nonparametric
8.
Mol Syndromol ; 13(6): 485-495, 2023 Jan.
Article En | MEDLINE | ID: mdl-36660027

Introduction: Pathogenic variants in the SLC26A2/DTDST gene cause the following spectrum of phenotypes: achondrogenesis 1B (ACG1B), atelosteogenesis 2 (AO2), diastrophic dysplasia (DTD), and recessive-multiple epiphyseal dysplasia (rMED), the first 2 being lethal. Here, we report a cohort and a comprehensive literature review on a genotype-phenotype correlation of SLC26A2/DTDST-related disorders. Methods: The local patients were genotyped by Sanger sequencing or next-generation sequencing (NGS). We reviewed data from the literature regarding phenotype, zygosity, and genotype in parallel. Results: The local cohort enrolled 12 patients, including one with a Desbuquois-like phenotype. All but one showed biallelic mutations, however, only one allele mutated in a fetus presenting ACG1B was identified. The literature review identified 42 articles and the analyses of genotype and zygosity included the 12 local patients. Discussion: The R279W variant was the most prevalent among the local patients. It was in homozygosity (hmz) in 2 patients with rMED and in compound heterozygosity (chtz) in 9 patients. The genotype and zygosity review of all patients led to the following conclusions: DTD is the most common phenotype in Finland due to a Finnish mutation (c.727-1G>C). Outside of Finland, rMED is the most prevalent phenotype, usually associated with R279W in hmz. In contrast, DTD's genotype is usually in chtz. Despite a large number of variants (38), just 8 are recurrent (R279W, C653S, c.-26+2T>C, R178*, K575Sfs*10, V340del, G663R, T512K). The last 3 in hmz lead to lethal phenotypes. The Finnish mutation is found only in chtz outside of Finland, being associated with all 4 classical phenotypes. The p.R178* and p.K575Sfs*10 variants should be viewed as lethal mutations since both were mainly described with lethal phenotypes and were never reported in hmz. The existence of 9 patients with only one mutated allele suggests that other mutations in the other allele of these patients still need to be unveiled.

9.
Commun Earth Environ ; 4(1): 126, 2023.
Article En | MEDLINE | ID: mdl-38665202

Viral infections modulate bacterial metabolism and ecology. Here, we investigated the hypothesis that viruses influence the ecology of purple and green sulfur bacteria in anoxic and sulfidic lakes, analogs of euxinic oceans in the geologic past. By screening metagenomes from lake sediments and water column, in addition to publicly-available genomes of cultured purple and green sulfur bacteria, we identified almost 300 high and medium-quality viral genomes. Viruses carrying the gene psbA, encoding the small subunit of photosystem II protein D1, were ubiquitous, suggesting viral interference with the light reactions of sulfur oxidizing autotrophs. Viruses predicted to infect these autotrophs also encoded auxiliary metabolic genes for reductive sulfur assimilation as cysteine, pigment production, and carbon fixation. These observations show that viruses have the genomic potential to modulate the production of metabolic markers of phototrophic sulfur bacteria that are used to identify photic zone euxinia in the geologic past.

10.
Environ Microbiome ; 17(1): 6, 2022 Feb 07.
Article En | MEDLINE | ID: mdl-35130971

BACKGROUND: Viruses are the most abundant biological entities on the planet and drive biogeochemical cycling on a global scale. Our understanding of biogeography of soil viruses and their ecological functions lags significantly behind that of Bacteria and Fungi. Here, a viromic approach was used to investigate the distribution and ecological functions of viruses from 19 soils across China. RESULTS: Soil viral community were clustered more significantly by geographical location than type of soil (agricultural and natural). Three clusters of viral communities were identified from North, Southeast and Southwest regions; these clusters differentiated using taxonomic composition and were mainly driven by geographic location and climate factors. A total of 972 viral populations (vOTUs) were detected spanning 23 viral families from the 19 viromes. Phylogenetic analyses of the phoH gene showed a remarkable diversity and the distribution of viral phoH genes was more dependent on the environment. Notably, five proteins involved in phosphorus (P) metabolism-related nucleotide synthesis functions, including dUTPase, MazG, PhoH, Thymidylate synthase complementing protein (Thy1), and Ribonucleoside reductase (RNR), were mainly identified in agricultural soils. CONCLUSIONS: The present work revealed that soil viral communities were distributed across China according to geographical location and climate factors. In addition, P metabolism genes encoded by these viruses probably drive the synthesis of nucleotides for their own genomes inside bacterial hosts, thereby affecting P cycling in the soil ecosystems.

11.
Int J Mol Sci ; 22(21)2021 Nov 07.
Article En | MEDLINE | ID: mdl-34769481

Ecological networking and in vitro studies predict that anaerobic, mucus-degrading bacteria are keystone species in cystic fibrosis (CF) microbiomes. The metabolic byproducts from these bacteria facilitate the colonization and growth of CF pathogens like Pseudomonas aeruginosa. Here, a multi-omics study informed the control of putative anaerobic keystone species during a transition in antibiotic therapy of a CF patient. A quantitative metagenomics approach combining sequence data with epifluorescence microscopy showed that during periods of rapid lung function loss, the patient's lung microbiome was dominated by the anaerobic, mucus-degrading bacteria belonging to Streptococcus, Veillonella, and Prevotella genera. Untargeted metabolomics and community cultures identified high rates of fermentation in these sputa, with the accumulation of lactic acid, citric acid, and acetic acid. P. aeruginosa utilized these fermentation products for growth, as indicated by quantitative transcriptomics data. Transcription levels of P. aeruginosa genes for the utilization of fermentation products were proportional to the abundance of anaerobic bacteria. Clindamycin therapy targeting Gram-positive anaerobes rapidly suppressed anaerobic bacteria and the accumulation of fermentation products. Clindamycin also lowered the abundance and transcription of P. aeruginosa, even though this patient's strain was resistant to this antibiotic. The treatment stabilized the patient's lung function and improved respiratory health for two months, lengthening by a factor of four the between-hospitalization time for this patient. Killing anaerobes indirectly limited the growth of P. aeruginosa by disrupting the cross-feeding of fermentation products. This case study supports the hypothesis that facultative anaerobes operated as keystone species in this CF microbiome. Personalized multi-omics may become a viable approach for routine clinical diagnostics in the future, providing critical information to inform treatment decisions.


Cystic Fibrosis/microbiology , Metagenomics/methods , Microbiota , Adult , Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/complications , Cystic Fibrosis/therapy , Genomics/methods , Humans , Lung/microbiology , Male , Metabolomics/methods , Microbiota/genetics , Respiratory Function Tests , Respiratory Insufficiency/genetics , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/microbiology , Respiratory Insufficiency/therapy , Sputum/microbiology
12.
Am J Med Genet C Semin Med Genet ; 187(3): 396-408, 2021 09.
Article En | MEDLINE | ID: mdl-34529350

Molecular diagnosis is important to provide accurate genetic counseling of skeletal dysplasias (SD). Although next-generation sequencing (NGS) techniques are currently the preferred methods for analyzing these conditions, some of the published results have not shown a detection rate as high as it would be expected. The present study aimed to assess the diagnostic yield of targeted NGS combined with Sanger sequencing (SS) for low-coverage exons of genes of interest and exome sequencing (ES) in a series of patients with rare SD and use two patients as an example of our strategy. This study used two different in-house panels. Of 93 variants found in 88/114 (77%) patients, 57 are novel. The pathogenic variants found in the following genes: B3GALT6, PCYT1A, INPPL1, LIFR, of four patients were only detected by SS. In conclusion, the high diagnostic yield reached in the present study can be attributed to both a good selection of patients and the utilization of the SS for the insufficiently covered regions. Additionally, the two case reports-a patient with acrodysostosis related to PRKAR1A and another with ciliopathy associated with KIAA0753, add new and relevant clinical information to the current knowledge.


Dysostoses , Osteochondrodysplasias , Choline-Phosphate Cytidylyltransferase , Galactosyltransferases , Genetic Counseling , High-Throughput Nucleotide Sequencing , Humans , Exome Sequencing
13.
PeerJ ; 9: e11213, 2021.
Article En | MEDLINE | ID: mdl-34249480

Reef-building corals are ecosystem engineers that compete with other benthic organisms for space and resources. Corals harvest energy through their surface by photosynthesis and heterotrophic feeding, and they divert part of this energy to defend their outer colony perimeter against competitors. Here, we hypothesized that corals with a larger space-filling surface and smaller perimeters increase energy gain while reducing the exposure to competitors. This predicted an association between these two geometric properties of corals and the competitive outcome against other benthic organisms. To test the prediction, fifty coral colonies from the Caribbean island of Curaçao were rendered using digital 3D and 2D reconstructions. The surface areas, perimeters, box-counting dimensions (as a proxy of surface and perimeter space-filling), and other geometric properties were extracted and analyzed with respect to the percentage of the perimeter losing or winning against competitors based on the coral tissue apparent growth or damage. The increase in surface space-filling dimension was the only significant single indicator of coral winning outcomes, but the combination of surface space-filling dimension with perimeter length increased the statistical prediction of coral competition outcomes. Corals with larger surface space-filling dimensions (Ds > 2) and smaller perimeters displayed more winning outcomes, confirming the initial hypothesis. We propose that the space-filling property of coral surfaces complemented with other proxies of coral competitiveness, such as life history traits, will provide a more accurate quantitative characterization of coral competition outcomes on coral reefs. This framework also applies to other organisms or ecological systems that rely on complex surfaces to obtain energy for competition.

14.
Environ Microbiol ; 23(8): 4098-4111, 2021 08.
Article En | MEDLINE | ID: mdl-34121301

Lysogens are common at high bacterial densities, an observation that contrasts with the prevailing view of lysogeny as a low-density refugium strategy. Here, we review the mechanisms regulating lysogeny in complex communities and show that the additive effects of coinfections, diversity and host energic status yield a bimodal distribution of lysogeny as a function of microbial densities. At high cell densities (above 106 cells ml-1 or g-1 ) and low diversity, coinfections by two or more phages are frequent and excess energy availability stimulates inefficient metabolism. Both mechanisms favour phage integration and characterize the Piggyback-the-Winner dynamic. At low densities (below 105 cells ml-1 or g-1 ), starvation represses lytic genes and extends the time window for lysogenic commitment, resulting in a higher frequency of coinfections that cause integration. This pattern follows the predictions of the refugium hypothesis. At intermediary densities (between 105 and 106 cells ml-1 or g-1 ), encounter rates and efficient energy metabolism favour lysis. This may involve Kill-the-Winner lytic dynamics and induction. Based on these three regimes, we propose a framework wherein phage integration occurs more frequently at both ends of the host density gradient, with distinct underlying molecular mechanisms (coinfections and host metabolism) dominating at each extreme.


Bacteriophages , Microbiota , Bacteria/genetics , Bacteriophages/genetics , Lysogeny
15.
Microorganisms ; 9(6)2021 May 21.
Article En | MEDLINE | ID: mdl-34064105

Roseobacters are globally abundant bacteria with critical roles in carbon and sulfur biogeochemical cycling. Here, we identified 173 new putative prophages in 79 genomes of Rhodobacteraceae. These prophages represented 1.3 ± 0.15% of the bacterial genomes and had no to low homology with reference and metagenome-assembled viral genomes from aquatic and terrestrial ecosystems. Among the newly identified putative prophages, 35% encoded auxiliary metabolic genes (AMGs), mostly involved in secondary metabolism, amino acid metabolism, and cofactor and vitamin production. The analysis of integration sites and gene homology showed that 22 of the putative prophages were actually gene transfer agents (GTAs) similar to a GTA of Rhodobacter capsulatus. Twenty-three percent of the predicted prophages were observed in the TARA Oceans viromes generated from free viral particles, suggesting that they represent active prophages capable of induction. The distribution of these prophages was significantly associated with latitude and temperature. The prophages most abundant at high latitudes encoded acpP, an auxiliary metabolic gene involved in lipid synthesis and membrane fluidity at low temperatures. Our results show that prophages and gene transfer agents are significant sources of genomic diversity in roseobacter, with potential roles in the ecology of this globally distributed bacterial group.

16.
Front Microbiol ; 12: 637430, 2021.
Article En | MEDLINE | ID: mdl-33815323

BACKGROUND: SARS-CoV-2 is an RNA virus causing COVID-19. The clinical characteristics and epidemiology of COVID-19 have been extensively investigated, however, only one study so far focused on the patient's nasopharynx microbiota. In this study we investigated the nasopharynx microbial community of patients that developed different severity levels of COVID-19. We performed 16S ribosomal DNA sequencing from nasopharyngeal swab samples obtained from SARS-CoV-2 positive (56) and negative (18) patients in the province of Alicante (Spain) in their first visit to the hospital. Positive SARS-CoV-2 patients were observed and later categorized in mild (symptomatic without hospitalization), moderate (hospitalization), and severe (admission to ICU). We compared the microbiota diversity and OTU composition among severity groups and built bacterial co-abundance networks for each group. RESULTS: Statistical analysis indicated differences in the nasopharyngeal microbiome of COVID19 patients. 62 OTUs were found exclusively in SARS-CoV-2 positive patients, mostly classified as members of the phylum Bacteroidota (18) and Firmicutes (25). OTUs classified as Prevotella were found to be significantly more abundant in patients that developed more severe COVID-19. Furthermore, co-abundance analysis indicated a loss of network complexity among samples from patients that later developed more severe symptoms. CONCLUSION: Our study shows that the nasopharyngeal microbiome of COVID-19 patients showed differences in the composition of specific OTUs and complexity of co-abundance networks. Taxa with differential abundances among groups could serve as biomarkers for COVID-19 severity. Nevertheless, further studies with larger sample sizes should be conducted to validate these results.

17.
Am J Med Genet C Semin Med Genet ; 184(4): 986-995, 2020 12.
Article En | MEDLINE | ID: mdl-33219737

Skeletal dysplasias (SD) are disturbances in growth due to defects intrinsic to the bone and/or cartilage, usually affecting multiple bones and having a progressive character. In this article, we review the state of clinical and research SD resources available in Latin America, including three specific countries (Brazil, Argentina, and Chile), that have established multidisciplinary clinics for the care of these patients. From the epidemiological point of view, the SD prevalence of 3.2 per 10,000 births from nine South American countries included in the ECLAMC network represents the most accurate estimate not just in Latin America, but worldwide. In Brazil, there are currently five groups focused on SD. The data from one of these groups including the website www.ocd.med.br, created to assist in the diagnosis of SD, are highlighted showing that telemedicine for this purpose represents a good strategy for the region. The experience of more than 30 years of the SD multidisciplinary clinic in an Argentinian Hospital is presented, evidencing a solid experience mainly in the follow-up of the most frequent SD, especially those belonging the FGFR3 group and OI. In Chile, a group with 20 years of experience presents its work with geneticists and pediatricians, focusing on diagnostic purposes and clinical management. Altogether, although SD health-care and research activities in Latin America are in their early stages, the experience in these three countries seems promising and stimulating for the region as a whole.


Osteochondrodysplasias , Argentina , Bone and Bones , Humans , Latin America/epidemiology , Prevalence
18.
mSystems ; 5(5)2020 Sep 15.
Article En | MEDLINE | ID: mdl-32934113

Temperate phages can associate with their bacterial host to form a lysogen, often modifying the phenotype of the host. Lysogens are dominant in the microbially dense environment of the mammalian gut. This observation contrasts with the long-standing hypothesis of lysogeny being favored at low microbial densities, such as in oligotrophic marine environments. Here, we hypothesized that phage coinfections-a well-understood molecular mechanism of lysogenization-increase at high microbial abundances. To test this hypothesis, we developed a biophysical model of coinfection for marine and gut microbiomes. The model stochastically sampled ranges of phage and bacterial concentrations, adsorption rates, lysogenic commitment times, and community diversity from each environment. In 90% of the sampled marine communities, less than 10% of the bacteria were predicted to be lysogenized via coinfection. In contrast, 25% of the sampled gut communities displayed more than 25% of lysogenization. The probability of lysogenization in the gut was a consequence of the higher densities and higher adsorption rates. These results suggest that, on average, coinfections can form two trillion lysogens in the human gut every day. In marine microbiomes, which were characterized by lower densities and phage adsorption rates, lysogeny via coinfection was still possible for communities with long lysogenic commitment times. Our study indicates that different physical factors causing coinfections can reconcile the traditional view of lysogeny at poor host growth (long commitment times) and the recent Piggyback-the-Winner framework proposing that lysogeny is favored in rich environments (high densities and adsorption rates).IMPORTANCE The association of temperate phages and bacterial hosts during lysogeny manipulates microbial dynamics from the oceans to the human gut. Lysogeny is well studied in laboratory models, but its environmental drivers remain unclear. Here, we quantified the probability of lysogenization caused by phage coinfections, a well-known trigger of lysogeny, in marine and gut microbial environments. Coinfections were quantified by developing a biophysical model that incorporated the traits of viral and bacterial communities. Lysogenization via coinfection was more frequent in highly productive environments like the gut, due to higher microbial densities and higher phage adsorption rates. At low cell densities, lysogenization occurred in bacteria with long duplication times. These results bridge the molecular understanding of lysogeny with the ecology of complex microbial communities.

19.
Proc Natl Acad Sci U S A ; 117(24): 13588-13595, 2020 06 16.
Article En | MEDLINE | ID: mdl-32482859

Viruses, microbes, and host macroorganisms form ecological units called holobionts. Here, a combination of metagenomic sequencing, metabolomic profiling, and epifluorescence microscopy was used to investigate how the different components of the holobiont including bacteria, viruses, and their associated metabolites mediate ecological interactions between corals and turf algae. The data demonstrate that there was a microbial assemblage unique to the coral-turf algae interface displaying higher microbial abundances and larger microbial cells. This was consistent with previous studies showing that turf algae exudates feed interface and coral-associated microbial communities, often at the detriment of the coral. Further supporting this hypothesis, when the metabolites were assigned a nominal oxidation state of carbon (NOSC), we found that the turf algal metabolites were significantly more reduced (i.e., have higher potential energy) compared to the corals and interfaces. The algae feeding hypothesis was further supported when the ecological outcomes of interactions (e.g., whether coral was winning or losing) were considered. For example, coral holobionts losing the competition with turf algae had higher Bacteroidetes-to-Firmicutes ratios and an elevated abundance of genes involved in bacterial growth and division. These changes were similar to trends observed in the obese human gut microbiome, where overfeeding of the microbiome creates a dysbiosis detrimental to the long-term health of the metazoan host. Together these results show that there are specific biogeochemical changes at coral-turf algal interfaces that predict the competitive outcomes between holobionts and are consistent with algal exudates feeding coral-associated microbes.


Anthozoa/metabolism , Chlorophyta/metabolism , Animals , Anthozoa/chemistry , Anthozoa/microbiology , Anthozoa/parasitology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Chlorophyta/chemistry , Coral Reefs , Ecosystem , Metagenomics , Microbiota
20.
BMC Genomics ; 21(1): 126, 2020 Feb 05.
Article En | MEDLINE | ID: mdl-32024463

BACKGROUND: Bacteriophages encode genes that modify bacterial functions during infection. The acquisition of phage-encoded virulence genes is a major mechanism for the rise of bacterial pathogens. In coral reefs, high bacterial density and lysogeny has been proposed to exacerbate reef decline through the transfer of phage-encoded virulence genes. However, the functions and distribution of these genes in phage virions on the reef remain unknown. RESULTS: Here, over 28,000 assembled viral genomes from the free viral community in Atlantic and Pacific Ocean coral reefs were queried against a curated database of virulence genes. The diversity of virulence genes encoded in the viral genomes was tested for relationships with host taxonomy and bacterial density in the environment. These analyses showed that bacterial density predicted the profile of virulence genes encoded by phages. The Shannon diversity of virulence-encoding phages was negatively related with bacterial density, leading to dominance of fewer genes at high bacterial abundances. A statistical learning analysis showed that reefs with high microbial density were enriched in viruses encoding genes enabling bacterial recognition and invasion of metazoan epithelium. Over 60% of phages could not have their hosts identified due to limitations of host prediction tools; for those which hosts were identified, host taxonomy was not an indicator of the presence of virulence genes. CONCLUSIONS: This study described bacterial virulence factors encoded in the genomes of bacteriophages at the community level. The results showed that the increase in microbial densities that occurs during coral reef degradation is associated with a change in the genomic repertoire of bacteriophages, specifically in the diversity and distribution of bacterial virulence genes. This suggests that phages are implicated in the rise of pathogens in disturbed marine ecosystems.


Bacteria/genetics , Bacteriophages/genetics , Genes, Bacterial , Virulence Factors/genetics , Bacteria/pathogenicity , Coral Reefs , Ecosystem , Genome, Viral , Genomics
...