Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Langenbecks Arch Surg ; 409(1): 203, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958766

ABSTRACT

BACKGROUND: Laparoscopic cholecystectomy (LC) is the standard of care for symptomatic gall stone disease. A good scoring system is necessary to standardize the reporting. Our aim was to develop and validate an objective scoring system, the Surgical Cholecystectomy Score (SCS) to grade the difficulty of LC. METHODS: The study was conducted in a single surgical unit at a tertiary care hospital in two phases from January 2017 to April 2021. Retrospective data was analysed and the difficulty of each procedure was graded according to the modified Nassar's scoring system. Significant preoperative and intraoperative data obtained was given a weightage score. In phase II, these scores were validated on a prospective cohort. Each procedure was classified either as easy, moderately difficult or difficult. STATISTICAL ANALYSIS: A univariate analysis was performed on the data followed by a multivariate regression analysis. Bidirectional stepwise selection was done to select the most significant variables. The Beta /Schneeweiss scoring system was used to generate a rounded risk score. RESULTS: Data of 800 patients was retrieved and graded. 10 intraoperative parameters were found to be significant. Each variable was assigned a rounded risk score. The final SCS range for intraoperative parameters was 0-15. The scoring system was validated on a cohort of 249 LC. In the final scoring, cut off SCS of > 8 was found to correlate with difficult procedures. Score of < 2 was equivalent to easy LC. A score between 2 and 8 indicated moderate difficulty. The area under ROC curve was 0.98 and 0.92 for the intraoperative score indicating that the score was an excellent measure of the difficulty level of LCs. CONCLUSION: The scoring system developed in this study has shown an excellent correlation with the difficulty of LC. It needs to be validated in different cohorts and across multiple centers further.


Subject(s)
Cholecystectomy, Laparoscopic , Humans , Female , Male , Middle Aged , Retrospective Studies , Adult , Aged , Gallstones/surgery , Prospective Studies , Risk Assessment
2.
Ecotoxicol Environ Saf ; 280: 116558, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850702

ABSTRACT

The Multidrug and toxic compound extrusion (MATE) and aluminium activated malate transporter (ALMT) gene families are involved in response to aluminium (Al) stress. In this study, we identified 48 MATE and 14 ALMT gene families in Vigna radiata genome and classified into 5 (MATE) and 3 (ALMT) clades by phylogenetic analysis. All the VrMATE and VrALMT genes were distributed across mungbean chromosomes. Tandem duplication was the main driving force for evolution and expansion of MATE gene family. Collinearity of mungbean with soybean indicated that MATE gene family is closely linked to Glycine max. Eight MATE transporters in clade 2 were found to be associated with previously characterized Al tolerance related MATEs in various plant species. Citrate exuding motif (CEM) was present in seven VrMATEs of clade 2. Promoter analysis revealed abundant plant hormone and stress responsive cis-elements. Results from quantitative real time-polymerase chain reaction (qRT-PCR) revealed that VrMATE19, VrMATE30 and VrALMT13 genes were markedly up-regulated at different time points under Al stress. Overall, this study offers a new direction for further molecular characterization of the MATE and ALMT genes in mungbean for Al tolerance.


Subject(s)
Aluminum , Phylogeny , Plant Proteins , Stress, Physiological , Vigna , Aluminum/toxicity , Vigna/genetics , Vigna/drug effects , Plant Proteins/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Profiling , Genome, Plant , Promoter Regions, Genetic
3.
BMJ Glob Health ; 9(6)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857944

ABSTRACT

BACKGROUND: Recent epidemiology of Rift Valley fever (RVF) disease in Africa suggests growing frequency and expanding geographic range of small disease clusters in regions that previously had not reported the disease. We investigated factors associated with the phenomenon by characterising recent RVF disease events in East Africa. METHODS: Data on 100 disease events (2008-2022) from Kenya, Uganda and Tanzania were obtained from public databases and institutions, and modelled against possible geoecological risk factors of occurrence including altitude, soil type, rainfall/precipitation, temperature, normalised difference vegetation index (NDVI), livestock production system, land-use change and long-term climatic variations. Decadal climatic variations between 1980 and 2022 were evaluated for association with the changing disease pattern. RESULTS: Of 100 events, 91% were small RVF clusters with a median of one human (IQR, 1-3) and three livestock cases (IQR, 2-7). These clusters exhibited minimal human mortality (IQR, 0-1), and occurred primarily in highlands (67%), with 35% reported in areas that had never reported RVF disease. Multivariate regression analysis of geoecological variables showed a positive correlation between occurrence and increasing temperature and rainfall. A 1°C increase in temperature and a 1-unit increase in NDVI, one months prior were associated with increased RVF incidence rate ratios of 1.20 (95% CI 1.1, 1.2) and 1.93 (95% CI 1.01, 3.71), respectively. Long-term climatic trends showed a significant decadal increase in annual mean temperature (0.12-0.3°C/decade, p<0.05), associated with decreasing rainfall in arid and semi-arid lowlands but increasing rainfall trends in highlands (p<0.05). These hotter and wetter highlands showed increasing frequency of RVF clusters, accounting for 76% and 43% in Uganda and Kenya, respectively. CONCLUSION: These findings demonstrate the changing epidemiology of RVF disease. The widening geographic range of disease is associated with climatic variations, with the likely impact of wider dispersal of virus to new areas of endemicity and future epidemics.


Subject(s)
Climate Change , Rift Valley Fever , Rift Valley Fever/epidemiology , Humans , Animals , Africa, Eastern/epidemiology , Livestock , Risk Factors , Uganda/epidemiology , Cluster Analysis , Disease Outbreaks , Kenya/epidemiology
4.
medRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798521

ABSTRACT

Background: Recent epidemiology of Rift Valley fever (RVF) disease in Africa suggests growing frequency and expanding geographic range of small disease clusters in regions that previously had not reported the disease. We investigated factors associated with the phenomenon by characterizing recent RVF disease events in East Africa. Methods: Data on 100 disease events (2008 - 2022) from Kenya, Uganda, and Tanzania were obtained from public databases and institutions, and modeled against possible geo-ecological risk factors of occurrence including altitude, soil type, rainfall/precipitation, temperature, normalized difference vegetation index (NDVI), livestock production system, land-use change, and long-term climatic variations. Decadal climatic variations between 1980-2022 were evaluated for association with the changing disease pattern. Results: Of 100 events, 91% were small RVF clusters with a median of one human (IQR, 1-3) and 3 livestock cases (IQR, 2-7). These clusters exhibited minimal human mortality (IQR 0-1), and occurred primarily in highlands (67%), with 35% reported in areas that had never reported RVF disease. Multivariate regression analysis of geo-ecological variables showed a positive correlation between occurrence and increasing temperature and rainfall. A 1oC increase in temperature and 1-unit increase in NDVI, 1-3 months prior were associated with increased RVF incidence rate ratios (IRR) of 1.20 (95% CI 1.1,1.2) and 9.88 (95% CI 0.85, 119.52), respectively. Long-term climatic trends showed significant decadal increase in annual mean temperature (0.12 to 0.3oC/decade, P<0.05), associated with decreasing rainfall in arid and semi-arid lowlands but increasing rainfall trends in highlands (P<0.05). These hotter and wetter highlands showed increasing frequency of RVF clusters, accounting for 76% and 43% in Uganda and Kenya, respectively. Conclusion: These findings demonstrate the changing epidemiology of RVF disease. The widening geographic range of disease is associated with climatic variations, with the likely impact of wider dispersal of virus to new areas of endemicity and future epidemics. Key questions: What is already known on this topic?: Rift Valley fever is recognized for its association with heavy rainfall, flooding, and El Niño rains in the East African region. A growing body of recent studies has highlighted a shifting landscape of the disease, marked by an expanding geographic range and an increasing number of small RVF clusters.What this study adds: This study challenges previous beliefs about RVF, revealing that it predominantly occurs in small clusters rather than large outbreaks, and its association with El Niño is not as pronounced as previously thought. Over 65% of these clusters are concentrated in the highlands of Kenya and Uganda, with 35% occurring in previously unaffected regions, accompanied by an increase in temperature and total rainfall between 1980 and 2022, along with a rise in the annual number of rainy days. Notably, the observed rainfall increases are particularly significant during the short-rains season (October-December), aligning with a secondary peak in RVF incidence. In contrast, the lowlands of East Africa, where typical RVF epidemics occur, display smaller and more varied trends in annual rainfall.How this study might affect research, practice, or policy: The worldwide consequence of the expanding RVF cluster is the broader dispersion of the virus, leading to the establishment of new regions with virus endemicity. This escalation heightens the risk of more extensive extreme-weather-associated RVF epidemics in the future. Global public health institutions must persist in developing preparedness and response strategies for such scenarios. This involves the creation and approval of human RVF vaccines and therapeutics, coupled with a rapid distribution plan through regional banks.

5.
Plant Physiol Biochem ; 211: 108710, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735154

ABSTRACT

Adenosine triphosphate-binding cassette transporters (ABC transporters) are involved in regulating plant growth, development and tolerance to environmental stresses. In this study, a total of 138 ABC transporter genes were identified in the lentil genome that were classified into eight subfamilies. Four lentil ABC transporters from subfamily B and I were clustered together with the previously characterized ABC transporter proteins related to aluminium (Al) detoxification. Lentil ABC transporter genes were distributed across the chromosomes. Tandem duplication was the main driving force for expansion of the ABC gene family. Collinearity of lentil with soybean indicated that ABC gene family is closely linked to Glycine max. ABC genes in the same subfamily showed similar gene structure and conserved motifs. The ABC promoter regions harboured a large number of plant hormones and multiple stress responsive cis-regulatory elements. The qRT-PCR showed that ABC genes had varied expression in roots of lentil at different time points under Al stress. This is the first report on genome wide identification and expression analyses of genes encoding ABC transporter genes in lentil which has provided in-depth insight for future research on evolution and elucidation of molecular mechanisms for aluminium tolerance.


Subject(s)
ATP-Binding Cassette Transporters , Aluminum , Gene Expression Regulation, Plant , Lens Plant , Plant Proteins , Stress, Physiological , Lens Plant/genetics , Lens Plant/metabolism , Lens Plant/drug effects , Aluminum/toxicity , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Multigene Family , Gene Expression Profiling , Phylogeny , Promoter Regions, Genetic/genetics
6.
Transl Oncol ; 43: 101920, 2024 May.
Article in English | MEDLINE | ID: mdl-38394865

ABSTRACT

BACKGROUND: The "one drug-one target" paradigm has various limitations affecting drug efficacy, such as resistance profiles and adverse effects. Combinational therapies help reduce unexpected off-target effects and accelerate therapeutic efficacy. Sorafenib- an FDA-approved drug for liver cancer, has multiple limitations. Therefore, it is recommended to identify an agent that increases its effectiveness and reduces toxicity. In this regard, Apigenin, a plant flavone, would be an excellent option to explore. METHODS: We used in silico, in vitro, and animal models to explore our hypothesis. For the in vitro study, HepG2 and Huh7 cells were exposed to Apigenin (12-96 µM) and Sorafenib (1-10 µM). For the in vivo study, Diethylnitrosamine (DEN) (25 mg/kg) induced tumor-bearing animals were given Apigenin (50 mg/kg) or Sorafenib (10 mg/kg) alone and combined. Apigenin's bioavailability was checked by UPLC. Tumor nodules were studied macroscopically and by Scanning Electron Microscopy (SEM). Biochemical analysis, histopathology, immunohistochemistry, and qRT-PCR were done. RESULTS: The results revealed Apigenin's good bioavailability. In silico study showed binding affinity of both chemicals with p53, NANOG, ß-Catenin, c-MYC, and TLR4. We consistently observed a better therapeutic efficacy in combination than alone treatment. Combination treatment showed i) better cytotoxicity, apoptosis induction, and cell cycle arrest of tumor cells, ii) tumor growth reduction, iii) increased expression of p53 and decreased Cd10, Nanog, ß-Catenin, c-Myc, Afp, and Tlr4. CONCLUSIONS: In conclusion, Apigenin could enhance the therapeutic efficacy of Sorafenib against liver cancer and may be a promising therapeutic approach for treating HCC. However, further research is imperative to gain more in-depth mechanistic insights.

7.
Cancer Metastasis Rev ; 43(1): 155-173, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37775641

ABSTRACT

Cancer cells undergo phenotypic switching (cancer cell plasticity) in response to microenvironmental cues, including exposure to therapy/treatment. Phenotypic plasticity enables the cancer cells to acquire more mesenchymal traits promoting cancer cells' growth, survival, therapy resistance, and disease recurrence. A significant program in cancer cell plasticity is epithelial-to-mesenchymal transition (EMT), wherein a comprehensive reprogramming of gene expression occurs to facilitate the translational shift from epithelial-to-mesenchymal phenotypes resulting in increased invasiveness and metastasis. In addition, EMT plays a pivotal role in facilitating cancer cells' escape from the body's immune system using several mechanisms, such as the downregulation of major histocompatibility complex-mediated antigen presentation, upregulation of immune checkpoint molecules, and recruitment of immune-suppressive cells. Cancer cells' ability to undergo phenotypic switching and EMT-driven immune escape presents a formidable obstacle in cancer management, highlighting the need to unravel the intricate mechanisms underlying these processes and develop novel therapeutic strategies. This article discusses the role of EMT in promoting immune evasion and therapy resistance. We also discuss the ongoing research on developing therapeutic approaches targeting intrinsic and induced cell plasticity within the immune suppressive microenvironment. We believe this review article will update the current research status and equip researchers, clinicians, and other healthcare professionals with valuable insights enhancing their existing knowledge and shedding light on promising directions for future cancer research. This will facilitate the development of innovative strategies for managing therapy-resistant cancers and improving patient outcomes.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Cell Transformation, Neoplastic , Phenotype , Tumor Microenvironment
8.
Phytother Res ; 38(1): 22-41, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37775996

ABSTRACT

Drug-induced liver injury (DILI) refers to adverse reactions to small chemical compounds, biological agents, and medical products. These reactions can manifest as acute or chronic damage to the liver. From 1997 to 2016, eight drugs, including troglitazone, nefazodone, and lumiracoxib, were removed from the market due to their liver-damaging effects, which can cause diseases. We aimed to review the recent research on natural products and their bioactive components as hepatoprotective agents in mitigating DILI. Recent articles were fetched via searching the PubMed, PMC, Google Scholar, and Web of Science electronic databases from 2010 to January 2023 using relevant keywords such as "natural products," "acetaminophen," "antibiotics," "paracetamol," "DILI," "hepatoprotective," "drug-induced liver injury," "liver failure," and "mitigation." The studies reveal that the antituberculosis drug (acetaminophen) is the most frequent cause of DILI, and natural products have been largely explored in alleviating acetaminophen-induced liver injury. They exert significant hepatoprotective effects by preventing mitochondrial dysfunction and inflammation, inhibiting oxidative/nitrative stress, and macromolecular damage. Due to the bioavailability and dietary nature, using natural products alone or as an adjuvant with existing drugs is promising. To advance DILI management, it is crucial to conduct well-designed randomized clinical trials to evaluate natural products' efficacy and develop new molecules clinically. However, natural products are a promising solution for remedying drug-induced hepatotoxicity and lowering the risk of DILI.


Subject(s)
Biological Products , Chemical and Drug Induced Liver Injury , Humans , Acetaminophen/adverse effects , Biological Products/pharmacology , Biological Products/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Liver , Anti-Bacterial Agents/pharmacology
9.
Plant Physiol Biochem ; 206: 108166, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039586

ABSTRACT

Extensive chromium (Cr) release into water and soil severely impairs crop productivity worldwide. Nanoparticle (NP) technology has shown potential for reducing heavy metal toxicity and improving plant physicochemical profiles. Herein, we investigated the effects of exogenous zinc oxide NPs (ZnO-NPs) on alleviating Cr stress in Cr-sensitive and tolerant chickpea genotypes. Hydroponically grown chickpea plants were exposed to Cr stress (0 and 120 µM) and ZnO-NPs (25 µM, 20 nm size) twice at a 7-day interval. Cr exposure reduced physiochemical profiles, ion content, cell viability, and gas exchange parameters, and it increased organic acid exudate accumulation in roots and the Cr content in the roots and leaves of the plants. However, ZnO-NP application significantly increased plant growth, enzymatic activities, proline, total soluble sugar, and protein and gas exchange parameters and reduced malondialdehyde and hydrogen peroxide levels, Cr content in roots, and organic acid presence to improve root cell viability. This study provides new insights into the role of ZnO-NPs in reducing oxidative stress along with Cr accumulation and mobility due to low levels of organic acids in chickpea roots. Notably, the Cr-tolerant genotype exhibited more pronounced alleviation of Cr stress by ZnO-NPs. These findings highlight the potential of ZnO-NP in regulating plant growth, reducing Cr accumulation, and promoting sustainable agricultural development.


Subject(s)
Cicer , Nanoparticles , Soil Pollutants , Zinc Oxide , Chromium/toxicity , Zinc Oxide/pharmacology , Cicer/metabolism , Oxidative Stress , Antioxidants/metabolism , Nanoparticles/chemistry , Plant Roots/metabolism , Soil Pollutants/toxicity
10.
Toxicol Appl Pharmacol ; 478: 116699, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37777120

ABSTRACT

Enzalutamide is an androgen receptor (AR) antagonist commonly used in the treatment of prostate cancer (CaP). However, due to the potential toxicity and development of resistance associated with Enzalutamide-based therapy, there is a need to explore additional compounds that can enhance its therapeutic effectiveness while minimizing toxicity. Lupeol is a pharmacologically active triterpene having anticancer effects. The objective of this study was to explore Lupeol's potential in enhancing the chemosensitivity of chemoresistant CaP cells to Enzalutamide in vitro and in a mouse model. To test our hypothesis, we performed cell viability and luciferase reporter gene assay, flow cytometry, animal studies, and histopathological analysis. Finally, we analyzed the change in selective metabolites in the prostate tissue by LCMS. Results demonstrated that a combination of Lupeol and Enzalutamide could better (i) suppress the Cancer Stem Cells (CSCs) and chemoresistant cells (PTEN-CaP8 and PC3) viability and migration, (ii) increase cell cycle arrest, (iii) inhibit the transcriptional activity of AR, c-MYC, c-FLIP, and TCF (iv) inhibit tumor growth in a mouse model (v) protect Enzalutamide-induced adverse effects in prostate glands and gut tissue (vi) decrease levels of testosterone and methionine metabolites. In conclusion, Lupeol enhances the pharmacological efficacy of Enzalutamide and reduces the adverse effects. Thus, Lupeol could be a promising adjuvant for improving Enzalutamide-based treatment outcomes and warrant further research.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Humans , Male , Animals , Mice , Receptors, Androgen/genetics , Prostate/pathology , Cell Line, Tumor , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Nitriles/pharmacology , Pentacyclic Triterpenes/pharmacology , Drug Resistance, Neoplasm , Prostatic Neoplasms, Castration-Resistant/drug therapy
11.
BMC Health Serv Res ; 23(1): 802, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37501069

ABSTRACT

BACKGROUND: The Manyata program is a quality improvement initiative for private healthcare facilities in India which provided maternity care services. Under this initiative, technical assistance was provided to selected facilities in the states of Uttar Pradesh, Jharkhand and Maharashtra which were interested in obtaining 'entry level certification' under the National Accreditation Board for Hospitals and Healthcare Providers (NABH) for provision of quality services. This paper describes the change in quality at those Manyata-supported facilities when assessed by the NABH standards of care. METHODS: Twenty-eight private-sector facilities underwent NABH assessments in the three states from August 2017 to February 2019. Baseline assessment (by program staff) and NABH assessment (by NABH assessors) findings were compared to assess the change in quality of care as per NABH standards of care. The reported performance gaps from NABH assessments were then also classified by thematic areas and suggested corrective actions based on program implementation experience. RESULTS: The overall adherence to NABH standards of care improved from 9% in the baseline assessment to 80% in the NABH assessment. A total of 831 performance gaps were identified by the NABH assessments, of which documentation issues accounted for a majority (70%), followed by training (19%). Most performance gaps could be corrected either by revising existing documentation or creating new documentation (62%), or by orienting facility staff on various protocols (35%). CONCLUSION: While the adherence of facilities to the NABH standards of care improved considerably, certain performance gaps remained, which were primarily related to documentation of facility policies and protocols and training of staff, and required corrective actions for the facilities to achieve NABH entry level certification.


Subject(s)
Maternal Health Services , Quality Improvement , Pregnancy , Humans , Female , India , Accreditation , Health Services Accessibility
12.
Sci Rep ; 13(1): 9960, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37340018

ABSTRACT

India is the world's second largest producer of wheat, with more than 40% increase in production since 2000. Increasing temperatures raise concerns about wheat's sensitivity to heat. Traditionally-grown sorghum is an alternative rabi (winter season) cereal, but area under sorghum production has declined more than 20% since 2000. We examine sensitivity of wheat and sorghum yields to historical temperature and compare water requirements in districts where both cereals are cultivated. Wheat yields are sensitive to increases in maximum daily temperature in multiple stages of the growing season, while sorghum does not display the same sensitivity. Crop water requirements (mm) are 1.4 times greater for wheat than sorghum, mainly due to extension of its growing season into summer. However, water footprints (m3 per ton) are approximately 15% less for wheat due to its higher yields. Sensitivity to future climate projections, without changes in management, suggests 5% decline in wheat yields and 12% increase in water footprints by 2040, compared with 4% increase in water footprint for sorghum. On balance, sorghum provides a climate-resilient alternative to wheat for expansion in rabi cereals. However, yields need to increase to make sorghum competitive for farmer profits and efficient use of land to provide nutrients.


Subject(s)
Edible Grain , Sorghum , Seasons , Crops, Agricultural , India , Triticum , Climate Change , Water
13.
Epigenomics ; 15(8): 517-537, 2023 04.
Article in English | MEDLINE | ID: mdl-37313832

ABSTRACT

Epigenetic changes play a significant role in cancer progression, maintenance and therapy resistance. Generally, epigenetic modifications are reversible, thereby gaining attention for therapeutic interventions. However, limited efficacy and therapy resistance remain the significant limitations of conventional and epigenetic anticancer therapies. Recently, combination therapies with epigenetic drugs (epi-drugs) and conventional anticancer treatment have gained widespread attention. Here, epi-drugs are administered with anticancer therapies to increase their therapeutic efficacy and sensitize cancer cells resistant to therapies. This review summarizes the mechanism of epi-drugs in reversing resistance to anticancer therapies. Further, the challenges faced during developing combination therapies with epi-drugs are discussed. We believe the clinical benefit of combination therapies could be increased by overcoming the challenges faced during epi-drug development.


Epigenetic changes play a significant role in cancer development and progression. Epigenetic drugs (epi-drugs) target enzymes involved in regulating epigenetic changes to maintain normal cell functioning. Epi-drugs include histone deacetylase inhibitors and DNA methyltransferase inhibitors, among others. These drugs have shown potential as standalone treatments for cancer and have also been found to work well in combination with other therapies (chemotherapy, radiotherapy and immunotherapy), helping to overcome treatment resistance. By targeting the epigenetic alterations that contribute to treatment resistance, epi-drugs have the potential to enhance the effectiveness of these therapies. This review article focuses on how epi-drugs overcome resistance to different cancer treatments. Combining epi-drugs with conventional anticancer therapies could provide better management of cancer. However, more preclinical and clinical research is needed to understand the potential benefits and optimize the use of these combinations fully. Overall, epi-drugs offer a promising avenue for improving cancer treatment outcomes and warrant further investigation.


Subject(s)
DNA Methylation , Neoplasms , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Epigenesis, Genetic
14.
Plant Physiol Biochem ; 200: 107767, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37220675

ABSTRACT

Chromium (Cr), a highly toxic redox-active metal cation in soil, seriously threatens global agriculture by affecting nutrient uptake and disturbing various physio-biochemical processes in plants, thereby reducing yields. Here, we examined the effects of different concentrations of Cr alone and in combination with hydrogen sulfide (H2S) application on the growth and physio-biochemical performance of two mungbeans (Vigna radiata L.) varieties, viz. Pusa Vishal (PV; Cr tolerant) and Pusa Ratna (PR; Cr sensitive), growing in a pot in hydroponics. Plants were grown in the pot experiment to examine their growth, enzymatic and non-enzymatic antioxidant levels, electrolyte balance, and plasma membrane (PM) H+-ATPase activity. Furthermore, root anatomy and cell death were analysed 15 days after sowing both varieties in hydroponic systems. The Cr-induced accumulation of reactive oxygen species caused cell death and affected the root anatomy and growth of both varieties. However, the extent of alteration in anatomical features was less in PV than in PR. Exogenous application of H2S promoted plant growth, thereby improving plant antioxidant activities and reducing cell death by suppressing Cr accumulation and translocation. Seedlings of both cultivars treated with H2S exhibited enhanced photosynthesis, ion uptake, glutathione, and proline levels and reduced oxidative stress. Interestingly, H2S restricted the translocation of Cr to aerial parts of plants by improving the nutrient profile and viability of root cells, thereby relieving plants from oxidative bursts by activating the antioxidant machinery through triggering the ascorbate-glutathione cycle. Overall, H2S application improved the nutrient profile and ionic homeostasis of Cr-stressed mungbean plants. These results highlight the importance of H2S application in protecting crops against Cr toxicity. Our findings can be utilised to develop management strategies to improve heavy metal tolerance among crops.


Subject(s)
Hydrogen Sulfide , Vigna , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Seedlings/metabolism , Vigna/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Chromium/toxicity , Oxidative Stress , Glutathione/metabolism , Crops, Agricultural/metabolism
15.
Pestic Biochem Physiol ; 193: 105448, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37248017

ABSTRACT

Indiscriminate uses of insecticide greatly damage the environment as well as non-target organisms. Thus, multiple levels of bioassays can help better management of our environment. Flubendiamide is a phthalic acid diamide insecticide that ceases the function of insect muscle leading to paralysis and death. Here, we aimed to explore the effects of Flubendiamide on the life cycle of Spodoptera litura vis-a-vis the mode of action. Fourth instar larvae of the same age (120 ± 2 h) and size were fed with different concentrations (20-80 µg/mL) of Flubendiamide for 12-72 h. We performed a pharmacokinetics study, different biochemical assays, p450, Ecdysone receptor (EcR) and other genes expression analyses by Real-Time PCR and gross damages by Dye exclusion assay and histopathology. Our results demonstrate that the mean concentration of Flubendiamide after 48 h is 9.907 µg/mL and (i) altered the molting, metamorphosis, and reproduction at 80 µg/mL (24 h) (ii) increases all oxidative stress parameters (ROS/RNS, MDA, 8OHdG), decreases oxidative defense mechanisms (SOD, CAT, GST) at 80 µg/mL (48 h) and p450 in a time and concentration-dependent manner, (iii) activates CncC/Maf apoptotic pathways at 80 µg/mL concentration at 24 h while the expression declined from 48 h onwards, (iii) downregulates the EcR expression in a time and concentration-dependent manner, which might be responsible for disturbed molting, metamorphosis, and reproduction, and (iv) increase the expression of apoptotic genes (Caspase 1, -3, and - 5), in time and concentration-dependent manner causing gross morphological and histological damages. In conclusion, indiscriminate use of this insecticide can affect the ecosystem and have the capacity to cause multiple hazardous effects on experimental organisms. Thus, it warrants further investigations to improve and optimize the integrated pest management packages, including Flubendiamide for better management.


Subject(s)
Insecticides , Animals , Insecticides/toxicity , Insecticides/metabolism , Spodoptera , Ecosystem , Life Cycle Stages , Larva
16.
Front Pharmacol ; 14: 1155163, 2023.
Article in English | MEDLINE | ID: mdl-37201024

ABSTRACT

Background: Guggulsterone (pregna-4,17-diene-3,16-dione; C21H28O2) is an effective phytosterol isolated from the gum resin of the tree Commiphora wightii (Family Burseraceae) and is responsible for many of the properties of guggul. This plant is widely used as traditional medicine in Ayurveda and Unani system of medicine. It exhibits several pharmacological activities, such as anti-inflammatory, analgesic, antibacterial, anti-septic and anticancer. In this article, the activities of Guggulsterone against cancerous cells were determined and summarized. Methods: Using 7 databases (PubMed, PMC, Google Scholar, Science Direct, Scopus, Cochrane and Ctri.gov), the literature search was conducted since conception until June 2021. Extensive literature search yielded 55,280 studies from all the databases. A total of 40 articles were included in the systematic review and of them, 23 articles were included in the meta-analysis.The cancerous cell lines used in the studies were for pancreatic cancer, hepatocellular carcinoma, head and neck squamous cell carcinoma, cholangiocarcinoma, oesophageal adenocarcinoma, prostrate cancer, colon cancer, breast cancer, gut derived adenocarcinoma, gastric cancer, colorectal cancer, bladder cancer, glioblastoma, histiocytic leukemia, acute myeloid leukemia and non-small cell lung cancer. The reliability of the selected studies was assessed using ToxRTool. Results: Based on this review, guggulsterone significantly affected pancreatic cancer (MiaPaCa-2, Panc-1, PC-Sw, CD18/HPAF, Capan1, PC-3), hepatocellular carcinoma (Hep3B, HepG2, PLC/PRF/5R), head and neck squamous cell carcinoma (SCC4, UM-22b, 1483), cholangiocarcinoma (HuCC-T1, RBE, Sk-ChA-1, Mz-ChA-1) and oesophageal adenocarcinoma (CP-18821, OE19), prostrate cancer (PC-3), colon cancer (HT-29), breast cancer (MCF7/DOX), gut derived adenocarcinoma (Bic-1), gastric cancer (SGC-7901), colorectal cancer (HCT116), bladder cancer (T24, TSGH8301), glioblastoma (A172, U87MG, T98G), histiocytic leukemia (U937), acute myeloid leukemia (HL60, U937) and non-small cell lung cancer (A549, H1975) by inducing apoptotic pathways, inhibiting cell proliferation, and regulating the expression of genes involved in apoptosis. Guggulsterone is known to have therapeutic and preventive effects on various categories of cancers. It can inhibit the progression of tumors and can even reduce their size by inducing apoptosis, exerting anti-angiogenic effects, and modulating various signaling cascades. In vitro studies reveal that Guggulsterone inhibits and suppresses the proliferation of an extensive range of cancer cells by decreasing intrinsic mitochondrial apoptosis, regulating NF-kB/STAT3/ß-Catenin/PI3K/Akt/CHOP pathway, modulating the expression of associated genes/proteins, and inhibiting angiogenesis. Furthermore, Guggulsterone reduces the production of inflammatory markers, such as CDX2 and COX-2. The other mechanism of the Guggulsterone activity is the reversal of P-glycoprotein-mediated multidrug resistance. Twenty three studies were selected for meta-analysis following the PRISMA statements. Fixed effect model was used for reporting the odds ratio. The primary endpoint was percentage apoptosis. 11 of 23 studies reported the apoptotic effect at t = 24 h and pooled odds ratio was 3.984 (CI 3.263 to 4.865, p < 0.001). 12 studies used Guggulsterone for t > 24 h and the odds ratio was 11.171 (CI 9.148 to 13.643, 95% CI, p < 0.001). The sub-group analysis based on cancer type, Guggulsterone dose, and treatment effects. Significant alterations in the level of apoptotic markers were reported by Guggulsterone treatment. Conclusion: This study suggested that Guggulsterone has apoptotic effects against various cancer types. Further investigation of its pharmacological activity and mechanism of action should be conducted. In vivo experiments and clinical trials are required to confirm the anticancer activity.

17.
Molecules ; 28(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36985795

ABSTRACT

The terms discussed in this review-biosurfactants (BSs) and bioemulsifiers (BEs)-describe surface-active molecules of microbial origin which are popular chemical entities for many industries, including food. BSs are generally low-molecular-weight compounds with the ability to reduce surface tension noticeably, whereas BEs are high-molecular-weight molecules with efficient emulsifying abilities. Some other biomolecules, such as lecithin and egg yolk, are useful as natural BEs in food products. The high toxicity and severe ecological impact of many chemical-based surfactants have directed interest towards BSs/BEs. Interest in food surfactant formulations and consumer anticipation of "green label" additives over synthetic or chemical-based surfactants have been steadily increasing. BSs have an undeniable prospective for replacing chemical surfactants with vast significance to food formulations. However, the commercialization of BSs/BEs production has often been limited by several challenges, such as the optimization of fermentation parameters, high downstream costs, and low yields, which had an immense impact on their broader adoptions in different industries, including food. The foremost restriction regarding the access of BSs/BEs is not their lack of cost-effective industrial production methods, but a reluctance regarding their potential safety, as well as the probable microbial hazards that may be associated with them. Most research on BSs/BEs in food production has been restricted to demonstrations and lacks a comprehensive assessment of safety and risk analysis, which has limited their adoption for varied food-related applications. Furthermore, regulatory agencies require extensive exploration and analysis to secure endorsements for the inclusion of BSs/BEs as potential food additives. This review emphasizes the promising properties of BSs/BEs, trailed by an overview of their current use in food formulations, as well as risk and toxicity assessment. Finally, we assess their potential challenges and upcoming future in substituting chemical-based surfactants.


Subject(s)
Food Industry , Surface-Active Agents , Prospective Studies , Surface-Active Agents/chemistry , Food Additives
18.
Int J Biol Macromol ; 233: 123534, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36740121

ABSTRACT

The chemistry of metal ions with human pathogens is essential for their survival, energy generation, redox signaling, and niche dominance. To regulate and manipulate the metal ions, various enzymes and metal chelators are present in pathogenic bacteria. Metalloenzymes incorporate transition metal such as iron, zinc, cobalt, and copper in their reaction centers to perform essential metabolic functions; however, iron and copper have gained more importance. Multicopper oxidases have the ability to perform redox reaction on phenolic substrates with the help of copper ions. They have been reported from Enterobacteriaceae, namely Salmonella enterica, Escherichia coli, and Yersinia enterocolitica, but their role in virulence is still poorly understood. Similarly, superoxide dismutases participate in reducing oxidative stress and allow the survival of pathogens. Their role in virulence and survival is well established in Salmonella typhimurium and Mycobacterium tuberculosis. Further, to ensure survival against stress, like metal starvation or metal toxicity, redox metalloenzymes and metal transportation systems of pathogens actively participate in metal homeostasis. Recently, the omics and protein structure biology studies have helped to predict new targets for regulation the colonization potential of the pathogenic strains. The current review is focused on the major roles of redox metalloenzymes, especially MCOs and SODs of human pathogenic bacteria.


Subject(s)
Copper , Metalloproteins , Humans , Copper/chemistry , Superoxide Dismutase/metabolism , Metals/metabolism , Oxidoreductases/metabolism , Oxidation-Reduction , Iron , Metalloproteins/metabolism , Bacteria/metabolism , Ions
19.
Eur Arch Psychiatry Clin Neurosci ; 273(6): 1387-1393, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36773080

ABSTRACT

We determined cytokine levels in paired serum/CSF samples from first-episode schizophrenia (FES) participants (n = 20) and controls (n = 21) using a 13-plex immunoassay. Applying strictly-determined detection limits, 12 cytokines were found in serum and two in CSF. Higher serum MCP-1 levels (p = 0.007) were present in FES versus controls, which correlated with serum IgG (R = - 0.750; p = 0.013). Finally, IL-18 levels correlated with body weight in FES (R = 0.691; p = 0.041). This study demonstrates potential limitations in the sensitivity of multiplex cytokine assays for CSF studies in mental disorders and suggests that some published studies in this area should be re-evaluated.


Subject(s)
Cytokines , Schizophrenia , Humans
20.
Sci Rep ; 13(1): 710, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639417

ABSTRACT

The impact of extreme heat on crop yields is an increasingly pressing issue given anthropogenic climate warming. However, some of the physical mechanisms involved in these impacts remain unclear, impeding adaptation-relevant insight and reliable projections of future climate impacts on crops. Here, using a multiple regression model based on observational data, we show that while extreme dry heat steeply reduced U.S. corn and soy yields, humid heat extremes had insignificant impacts and even boosted yields in some areas, despite having comparably high dry-bulb temperatures as their dry heat counterparts. This result suggests that conflating dry and humid heat extremes may lead to underestimated crop yield sensitivities to extreme dry heat. Rainfall tends to precede humid but not dry heat extremes, suggesting that multivariate weather sequences play a role in these crop responses. Our results provide evidence that extreme heat in recent years primarily affected yields by inducing moisture stress, and that the conflation of humid and dry heat extremes may lead to inaccuracy in projecting crop yield responses to warming and changing humidity.


Subject(s)
Hot Temperature , Zea mays , Glycine max , Weather , Climate , Climate Change
SELECTION OF CITATIONS
SEARCH DETAIL
...