Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 20(4): e1012028, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662765

ABSTRACT

Intrinsically disordered regions (IDRs) are segments of proteins without stable three-dimensional structures. As this flexibility allows them to interact with diverse binding partners, IDRs play key roles in cell signaling and gene expression. Despite the prevalence and importance of IDRs in eukaryotic proteomes and various biological processes, associating them with specific molecular functions remains a significant challenge due to their high rates of sequence evolution. However, by comparing the observed values of various IDR-associated properties against those generated under a simulated model of evolution, a recent study found most IDRs across the entire yeast proteome contain conserved features. Furthermore, it showed clusters of IDRs with common "evolutionary signatures," i.e. patterns of conserved features, were associated with specific biological functions. To determine if similar patterns of conservation are found in the IDRs of other systems, in this work we applied a series of phylogenetic models to over 7,500 orthologous IDRs identified in the Drosophila genome to dissect the forces driving their evolution. By comparing models of constrained and unconstrained continuous trait evolution using the Brownian motion and Ornstein-Uhlenbeck models, respectively, we identified signals of widespread constraint, indicating conservation of distributed features is mechanism of IDR evolution common to multiple biological systems. In contrast to the previous study in yeast, however, we observed limited evidence of IDR clusters with specific biological functions, which suggests a more complex relationship between evolutionary constraints and function in the IDRs of multicellular organisms.


Subject(s)
Drosophila Proteins , Intrinsically Disordered Proteins , Drosophila melanogaster/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Evolution, Molecular , Sequence Homology , Amino Acid Sequence
2.
Cancer Chemother Pharmacol ; 85(4): 805-816, 2020 04.
Article in English | MEDLINE | ID: mdl-32185484

ABSTRACT

PURPOSE: Metarrestin is a first-in-class pyrrolo-pyrimidine-derived small molecule targeting a marker of genome organization associated with metastasis and is currently in preclinical development as an anti-cancer agent. Here, we report the in vitro ADME characteristics and in vivo pharmacokinetic behavior of metarrestin. METHODS: Solubility, permeability, and efflux ratio as well as in vitro metabolism of metarrestin in hepatocytes, liver microsomes and S9 fractions, recombinant cytochrome P450 (CYP) enzymes, and potential for CYP inhibition were evaluated. Single dose pharmacokinetic profiles after intravenous and oral administration in mice, rat, dog, monkey, and mini-pig were obtained. Simple allometric scaling was applied to predict human pharmacokinetics. RESULTS: Metarrestin had an aqueous solubility of 150 µM at pH 7.4, high permeability in PAMPA and moderate efflux ratio in Caco-2 assays. The compound was metabolically stable in liver microsomes, S9 fractions, and hepatocytes from six species, including human. Metarrestin is a CYP3A4 substrate and, in mini-pigs, is also directly glucuronidated. Metarrestin did not show cytochrome P450 inhibitory activity. Plasma concentration-time profiles showed low to moderate clearance, ranging from 0.6 mL/min/kg in monkeys to 48 mL/min/kg in mice and moderate to high volume of distribution, ranging from 1.5 L/kg in monkeys to 17 L/kg in mice. Metarrestin has greater than 80% oral bioavailability in all species tested. The excretion of unchanged parent drug in urine was < 5% in dogs and < 1% in monkeys over collection periods of ≥ 144 h; in bile-duct cannulated rats, the excretion of unchanged drug was < 1% in urine and < 2% in bile over a collection period of 48 h. CONCLUSIONS: Metarrestin is a low clearance compound which has good bioavailability and large biodistribution after oral administration. Biotransformation appears to be the major elimination process for the parent drug. In vitro data suggest a low drug-drug interaction potential on CYP-mediated metabolism. Overall favorable ADME and PK properties support metarrestin's progression to clinical investigation.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Microsomes, Liver/metabolism , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Pyrroles/administration & dosage , Pyrroles/pharmacokinetics , Administration, Oral , Animals , Biotransformation , Cytochrome P-450 Enzyme Inhibitors/administration & dosage , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Dogs , Drug Evaluation, Preclinical , Drug Interactions , Female , Haplorhini , Humans , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/drug effects , Rats , Rats, Sprague-Dawley , Species Specificity , Swine , Swine, Miniature , Tissue Distribution
3.
Cancer Chemother Pharmacol ; 82(6): 1067-1080, 2018 12.
Article in English | MEDLINE | ID: mdl-30306263

ABSTRACT

PURPOSE: Metarrestin is a first-in-class small molecule clinical candidate capable of disrupting the perinucleolar compartment, a subnuclear structure unique to metastatic cancer cells. This study aims to define the pharmacokinetic (PK) profile of metarrestin and the pharmacokinetic/pharmacodynamic relationship of metarrestin-regulated markers. METHODS: PK studies included the administration of single or multiple dose of metarrestin at 3, 10, or 25 mg/kg via intravenous (IV) injection, gavage (PO) or with chow to wild-type C57BL/6 mice and KPC mice bearing autochthonous pancreatic tumors. Metarrestin concentrations were analyzed by UPLC-MS/MS. Pharmacodynamic assays included mRNA expression profiling by RNA-seq and qRT-PCR for KPC mice. RESULTS: Metarrestin had a moderate plasma clearance of 48 mL/min/kg and a large volume of distribution of 17 L/kg at 3 mg/kg IV in C57BL/6 mice. The oral bioavailability after single-dose (SD) treatment was > 80%. In KPC mice treated with SD 25 mg/kg PO, plasma AUC0-∞ of 14400 ng h/mL, Cmax of 810 ng/mL and half-life (t1/2) of 8.5 h were observed. At 24 h after SD of 25 mg/kg PO, the intratumor concentration of metarrestin was high with a mean value of 6.2 µg/g tissue (or 13 µM), well above the cell-based IC50 of 0.4 µM. At multiple dose (MD) 25 mg/kg/day PO in KPC mice, mean tissue/plasma AUC0-24h ratio for tumor, spleen and liver was 37, 30 and 31, respectively. There was a good linear relationship of dosage to AUC0-24h and C24h. AUC0-24h MD to AUC0-24h SD ratios ranged from two for liver to five for tumor indicating additional accumulation in tumors. Dose-dependent normalization of FOXA1 and FOXO6 mRNA expression was observed in KPC tumors. CONCLUSIONS: Metarrestin is an effective therapeutic candidate with a favorable PK profile achieving excellent intratumor tissue levels in a disease with known poor drug delivery.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Organelles/drug effects , Pancreatic Neoplasms/drug therapy , Pyrimidines/pharmacokinetics , Pyrroles/pharmacokinetics , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/blood , Antineoplastic Agents/therapeutic use , Area Under Curve , Cell Line, Tumor , Dose-Response Relationship, Drug , Forkhead Transcription Factors/genetics , Half-Life , Hepatocyte Nuclear Factor 3-alpha/genetics , Humans , Injections, Intravenous , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Specificity , Organelles/metabolism , Organelles/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pyrimidines/administration & dosage , Pyrimidines/blood , Pyrimidines/therapeutic use , Pyrroles/administration & dosage , Pyrroles/blood , Pyrroles/therapeutic use , Tissue Distribution
4.
Nat Commun ; 7: 11951, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27301800

ABSTRACT

Microorganisms form biofilms containing differentiated cell populations. To determine factors driving differentiation, we herein visualize protein and metal distributions within Pseudomonas aeruginosa biofilms using imaging mass spectrometry. These in vitro experiments reveal correlations between differential protein distribution and metal abundance. Notably, zinc- and manganese-depleted portions of the biofilm repress the production of anti-staphylococcal molecules. Exposure to calprotectin (a host protein known to sequester metal ions at infectious foci) recapitulates responses occurring within metal-deplete portions of the biofilm and promotes interaction between P. aeruginosa and Staphylococcus aureus. Consistent with these results, the presence of calprotectin promotes co-colonization of the murine lung, and polymicrobial communities are found to co-exist in calprotectin-enriched airspaces of a cystic fibrosis lung explant. These findings, which demonstrate that metal fluctuations are a driving force of microbial community structure, have clinical implications because of the frequent occurrence of P. aeruginosa and S. aureus co-infections.


Subject(s)
Immunity, Innate , Leukocyte L1 Antigen Complex/pharmacology , Microbial Interactions , Pseudomonas aeruginosa/metabolism , Staphylococcus aureus/metabolism , Animals , Bacterial Proteins/metabolism , Biofilms/drug effects , Biofilms/growth & development , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , Coinfection/microbiology , Coinfection/pathology , Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Humans , Manganese/metabolism , Mice , Microbial Interactions/drug effects , Proteomics , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...