Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(11): 16795-16804, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32549494

ABSTRACT

Nominal dopant-free zinc blende twinning superlattice InP nanowires have been grown with high crystal-quality and taper-free morphology. Here, we demonstrate its superior optical performance and clarify the different carrier recombination mechanisms at different temperatures using a time resolved photoluminescence study. The existence of regular twin planes and lateral overgrowth do not significantly increase the defect density. At room temperature, the as-grown InP nanowires have a strong emission at 1.348 eV and long minority carrier lifetime (∼3 ns). The carrier recombination dynamics is mainly dominated by nonradiative recombination due to surface trapping states; a wet chemical etch to reduce the surface trapping density thus boosts the emission intensity and increases the carrier lifetime to 7.1 ns. This nonradiative recombination mechanism dominates for temperatures above 155 K, and the carrier lifetime decreases with increasing temperature. However, radiative recombination dominates the carrier dynamics at temperature below ∼75 K, and a strong donor-bound exciton emission with a narrow emission linewidth of 4.5 meV is observed. Consequently, carrier lifetime increases with temperature. By revealing carrier recombination mechanisms over the temperature range 10-300 K, we demonstrate the attraction of using InP nanostructure for photonics and optoelectronic applications.

2.
Light Sci Appl ; 9: 43, 2020.
Article in English | MEDLINE | ID: mdl-32194957

ABSTRACT

Continuous room temperature nanowire lasing from silicon-integrated optoelectronic elements requires careful optimisation of both the lasing cavity Q-factor and population inversion conditions. We apply time-gated optical interferometry to the lasing emission from high-quality GaAsP/GaAs quantum well nanowire laser structures, revealing high Q-factors of 1250 ± 90 corresponding to end-facet reflectivities of R = 0.73 ± 0.02. By using optimised direct-indirect band alignment in the active region, we demonstrate a well-refilling mechanism providing a quasi-four-level system leading to multi-nanosecond lasing and record low room temperature lasing thresholds (~6 µJ cm-2 pulse-1) for III-V nanowire lasers. Our findings demonstrate a highly promising new route towards continuously operating silicon-integrated nanolaser elements.

3.
Nanotechnology ; 30(2): 025709, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30398164

ABSTRACT

Few-layer graphene (FLG) platelets exfoliated directly from graphite are finding a wide range of potential applications, including composites and printed electronics. However, characterisation of the FLG material following incorporation into polymers, including the quality of the dispersion, remains a challenge. Here, we present the use of terahertz time-domain spectroscopy as a potential solution to this challenge which could form the basis of a rapid characterisation tool. The THz refractive index was found to be highly sensitive to the loading of FLG, opening the route to mapping local FLG concentration within a polymer composite sample. By fitting the measured permittivity of the flakes to the Drude-Smith model of conductivity, we also show that the carrier concentrations of these materials are comparable to un-doped chemical vapour deposition produced materials. The ability to measure electronic properties of FLG following processing is important to ensure that defects have not been introduced or chemical functionalisation removed during processing.

4.
Nano Lett ; 19(1): 362-368, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30525674

ABSTRACT

Semiconductor nanowires suffer from significant non-radiative surface recombination; however, heavy p-type doping has proven to be a viable option to increase the radiative recombination rate and, hence, quantum efficiency of emission, allowing the demonstration of room-temperature lasing. Using a large-scale optical technique, we have studied Zn-doped GaAs nanowires to understand and quantify the effect of doping on growth and lasing properties. We measure the non-radiative recombination rate ( knr) to be (0.14 ± 0.04) ps-1 by modeling the internal quantum efficiency (IQE) as a function of doping level. By applying a correlative method, we identify doping and nanowire length as key controllable parameters determining lasing behavior, with reliable room-temperature lasing occurring for p ≳ 3 × 1018 cm-3 and lengths of ≳4 µm. We report a best-in-class core-only near-infrared nanowire lasing threshold of ∼10 µJ cm-2, and using a data-led filtering step, we present a method to simply identify subsets of nanowires with over 90% lasing yield.

SELECTION OF CITATIONS
SEARCH DETAIL