Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38712046

ABSTRACT

Interleukin 2 (IL-2) is the first identified cytokine and its interaction with receptors has been known to shape the immune responses in many lymphoid or non-lymphoid tissues for more than four decades. Active T cells are the primary cellular source for IL-2 production and epithelial cells have never been considered the major cellular source of IL-2 under physiological conditions. It is, however, tempting to speculate that epithelial cells could potentially express IL-2 that regulates the intricate interactions between epithelial cells and lymphocytes. Datamining our recently published single-cell RNAseq in the mouse mammary gland identified IL-2 expression in mammary epithelial cells, which is induced by prolactin via the STAT5 signaling pathway. Furthermore, epithelial IL-2 plays a crucial role in maintaining the physiological functions of natural killer (NK) cells within the mammary glands. IL-2 deletion in the mammary epithelial cells leads to a significant reduction in the number and function of NK cells, which in turn results in defective immunosurveillance, expansion of luminal epithelial cells, and tumor development. Interestingly, T cells in the mammary glands are not changed, indicating the specific regulation of NK cells by epithelial IL-2 production. In agreement, we also found that human epithelial cells express IL-2 and NK cells express the highest level of IL2RB among all the immune cells. Here, we provide the first evidence that epithelial cells produce IL-2, which is critical for maintaining the physiological functions of NK cells in immunosurveillance.

2.
Nature ; 610(7930): 173-181, 2022 10.
Article in English | MEDLINE | ID: mdl-36171288

ABSTRACT

Combination therapy with PD-1 blockade and IL-2 is highly effective during chronic lymphocytic choriomeningitis virus infection1. Here we examine the underlying basis for this synergy. We show that PD-1 + IL-2 combination therapy, in contrast to PD-1 monotherapy, substantially changes the differentiation program of the PD-1+TCF1+ stem-like CD8+ T cells and results in the generation of transcriptionally and epigenetically distinct effector CD8+ T cells that resemble highly functional effector CD8+ T cells seen after an acute viral infection. The generation of these qualitatively superior CD8+ T cells that mediate viral control underlies the synergy between PD-1 and IL-2. Our results show that the PD-1+TCF1+ stem-like CD8+ T cells, also referred to as precursors of exhausted CD8+ T cells, are not fate-locked into the exhaustion program and their differentiation trajectory can be changed by IL-2 signals. These virus-specific effector CD8+ T cells emerging from the stem-like CD8+ T cells after combination therapy expressed increased levels of the high-affinity IL-2 trimeric (CD25-CD122-CD132) receptor. This was not seen after PD-1 blockade alone. Finally, we show that CD25 engagement with IL-2 has an important role in the observed synergy between IL-2 cytokine and PD-1 blockade. Either blocking CD25 with an antibody or using a mutated version of IL-2 that does not bind to CD25 but still binds to CD122 and CD132 almost completely abrogated the synergistic effects observed after PD-1 + IL-2 combination therapy. There is considerable interest in PD-1 + IL-2 combination therapy for patients with cancer2,3, and our fundamental studies defining the underlying mechanisms of how IL-2 synergizes with PD-1 blockade should inform these human translational studies.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-2 , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/drug effects , Drug Therapy, Combination , Humans , Interleukin Receptor Common gamma Subunit , Interleukin-2/immunology , Interleukin-2/pharmacology , Interleukin-2/therapeutic use , Interleukin-2 Receptor alpha Subunit , Interleukin-2 Receptor beta Subunit , Lymphocytic Choriomeningitis/drug therapy , Lymphocytic Choriomeningitis/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T Cell Transcription Factor 1
3.
Cell Rep ; 39(2): 110632, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35417685

ABSTRACT

Differential interleukin-2 (IL-2) signaling and production are associated with disparate effector and memory fates. Whether the IL-2 signals perceived by CD8 T cells come from autocrine or paracrine sources, the timing of IL-2 signaling and their differential impact on CD8 T cell responses remain unclear. Using distinct models of germline and conditional IL-2 ablation in post-thymic CD8 T cells, this study shows that paracrine IL-2 is sufficient to drive optimal primary expansion, effector and memory differentiation, and metabolic function. In contrast, autocrine IL-2 is uniquely required during primary expansion to program robust secondary expansion potential in memory-fated cells. This study further shows that IL-2 production by antigen-specific CD8 T cells is largely independent of CD4 licensing of dendritic cells (DCs) in inflammatory infections with robust DC activation. These findings bear implications for immunizations and adoptive T cell immunotherapies, where effector and memory functions may be commandeered through IL-2 programming.


Subject(s)
Immunologic Memory , Interleukin-2 , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Interleukin-2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
4.
Nature ; 568(7752): 405-409, 2019 04.
Article in English | MEDLINE | ID: mdl-30944470

ABSTRACT

Interleukin (IL)-2 is a pleiotropic cytokine that is necessary to prevent chronic inflammation in the gastrointestinal tract1-4. The protective effects of IL-2 involve the generation, maintenance and function of regulatory T (Treg) cells4-8, and the use of low doses of IL-2 has emerged as a potential therapeutic strategy for patients with inflammatory bowel disease9. However, the cellular and molecular pathways that control the production of IL-2 in the context of intestinal health are undefined. Here we show, in a mouse model, that IL-2 is acutely required to maintain Treg cells and immunological homeostasis throughout the gastrointestinal tract. Notably, lineage-specific deletion of IL-2 in T cells did not reduce Treg cells in the small intestine. Unbiased analyses revealed that, in the small intestine, group-3 innate lymphoid cells (ILC3s) are the dominant cellular source of IL-2, which is induced selectively by IL-1ß. Macrophages in the small intestine produce IL-1ß, and activation of this pathway involves MYD88- and NOD2-dependent sensing of the microbiota. Our loss-of-function studies show that ILC3-derived IL-2 is essential for maintaining Treg cells, immunological homeostasis and oral tolerance to dietary antigens in the small intestine. Furthermore, production of IL-2 by ILC3s was significantly reduced in the small intestine of patients with Crohn's disease, and this correlated with lower frequencies of Treg cells. Our results reveal a previously unappreciated pathway in which a microbiota- and IL-1ß-dependent axis promotes the production of IL-2 by ILC3s to orchestrate immune regulation in the intestine.


Subject(s)
Immunity, Innate/immunology , Interleukin-2/immunology , Intestines/cytology , Intestines/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens/administration & dosage , Antigens/immunology , Crohn Disease/immunology , Crohn Disease/metabolism , Crohn Disease/pathology , Female , Gastrointestinal Microbiome/immunology , Homeostasis/immunology , Humans , Inflammation/immunology , Inflammation/pathology , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Interleukin-2/deficiency , Interleukin-2/metabolism , Intestine, Small/cytology , Intestine, Small/immunology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Nod2 Signaling Adaptor Protein/deficiency , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , T-Lymphocytes, Regulatory/classification , T-Lymphocytes, Regulatory/metabolism
5.
J Immunol ; 200(12): 3926-3933, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29728511

ABSTRACT

The cytokine IL-2 is critical for promoting the development, homeostasis, and function of regulatory T (Treg) cells. The cellular sources of IL-2 that promote these processes remain unclear. T cells, B cells, and dendritic cells (DCs) are known to make IL-2 in peripheral tissues. We found that T cells and DCs in the thymus also make IL-2. To identify cellular sources of IL-2 in Treg cell development and homeostasis, we used Il2FL/FL mice to selectively delete Il2 in T cells, B cells, and DCs. Because IL-15 can partially substitute for IL-2 in Treg cell development, we carried out the majority of these studies on an Il15-/- background. Deletion of Il2 in B cells, DCs, or both these subsets had no effect on Treg cell development, either in wild-type (WT) or Il15-/- mice. Deletion of Il2 in T cells had minimal effects in WT mice but virtually eliminated developing Treg cells in Il15-/- mice. In the spleen and most peripheral lymphoid organs, deletion of Il2 in B cells, DCs, or both subsets had no effect on Treg cell homeostasis. In contrast, deletion of Il2 in T cells led to a significant decrease in Treg cells in either WT or Il15-/- mice. The one exception was the mesenteric lymph nodes where significantly fewer Treg cells were observed when Il2 was deleted in both T cells and DCs. Thus, T cells are the sole source of IL-2 needed for Treg cell development, but DCs can contribute to Treg cell homeostasis in select organs.


Subject(s)
Homeostasis/immunology , Interleukin-2/immunology , T-Lymphocytes, Regulatory/immunology , Animals , B-Lymphocytes/immunology , Dendritic Cells/immunology , Lymph Nodes/immunology , Lymphocytes/immunology , Mice , Spleen/immunology
7.
Front Immunol ; 6: 502, 2015.
Article in English | MEDLINE | ID: mdl-26483792
8.
Sci Rep ; 5: 14166, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26391053

ABSTRACT

Mechanically robust battery electrodes are desired for applications in wearable devices, flexible displays, and structural energy and power. In this regard, the challenge is to balance mechanical and electrochemical properties in materials that are inherently brittle. Here, we demonstrate a unique water-based self-assembly approach that incorporates a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT-b-PEO), with V2O5 to form a flexible, tough, carbon-free hybrid battery cathode. V2O5 is a promising lithium intercalation material, but it remains limited by its poor conductivity and mechanical properties. Our approach leads to a unique electrode structure consisting of interlocking V2O5 layers glued together with micellar aggregates of P3HT-b-PEO, which results in robust mechanical properties, far exceeding the those obtained from conventional fluoropolymer binders. Only 5 wt % polymer is required to triple the flexibility of V2O5, and electrodes comprised of 10 wt % polymer have unusually high toughness (293 kJ/m(3)) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes. Furthermore, addition of P3HT-b-PEO enhances lithium-ion diffusion, eliminates cracking during cycling, and boosts cyclability relative to V2O5 alone. These results highlight the importance of tradeoffs between mechanical and electrochemical performance, where polymer content can be used to tune both aspects.


Subject(s)
Electric Power Supplies , Electrodes , Polymers , Vanadium Compounds
10.
Front Immunol ; 5: 356, 2014.
Article in English | MEDLINE | ID: mdl-25120542
12.
Front Immunol ; 5: 29, 2014.
Article in English | MEDLINE | ID: mdl-24550914

ABSTRACT

Early reports on T cell antigen receptor (TCR) signaling uncovered a rapid increase in intracellular calcium concentration and the activation of calcium-dependent protein kinase as necessary for T cell activation. Cytolytic T cell clones were instrumental in the discovery of intracellular cytolytic granules, and the isolation of the perforin and granzyme molecules as the molecular effectors of cell-mediated lysis of target cells via apoptosis. Cytolytic T cell clones and TCR cDNA clones were also instrumental for the generation of TCR transgenic animals, which provided definitive evidence for negative selection of self-reactive immature thymocytes. In addition, studies of TCR complex signaling of immature thymocytes compared with mature T cells were consistent with the interpretation that negative selection occurs as a consequence of the incapacity of immature cells to produce IL-2, resulting in cytokine deprivation apoptosis. By comparison, taking advantage of cloned TCRs derived from T cell clones reactive with male-specific molecules, using TCR transgenic mice it was possible to document positive selection of female thymocytes when the male-specific molecules were absent. Focusing on the molecular mechanisms of T cell "help" for the generation of antibody-forming cells following the path opened by the elucidation of the IL-2 molecule, several groups were successful in the identification, isolation, and characterization of three new interleukin molecules (IL-4, IL-5, and IL-6) that promote the proliferation and differentiation of B cells. In addition, the identification of a B cell surface molecule (CD40) that augmented B cell antigen receptor-stimulated proliferation and differentiation led to the discovery of a T cell activation surface molecule that proved to be the CD40-ligand, thus finally providing a molecular explanation for "linked or cognate" recognition when T cells and B cells interact physically. Accordingly, the decade after the generation of the first T cell clones saw the elucidation of the molecular mechanisms of T cell cytotoxicity and T cell help, thereby expanding the number of molecules responsible for adaptive T cell immunity.

13.
Indian J Med Res ; 137(5): 895-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23760373

ABSTRACT

One of the most celebrated achievements of immunology and modern medicine is the eradication of the dreaded plague smallpox. From the introduction of smallpox vaccination by Edward Jenner, to its popularization by Louis Pasteur, to the eradication effort led by Donald Henderson, this story has many lessons for us today, including the characteristics of the disease and vaccine that permitted its eradication, and the obviousness of the vaccine as a vector for other intractable Infectious diseases. The disease itself, interpreted in the light of modern molecular immunology, is an obvious immunopathological disease, which occurs after a latent interval of 1-2 weeks, and manifests as a systemic cell-mediated delayed type hypersensitivity (DTH) syndrome. The vaccine that slayed this dragon was given the name vaccinia, and was thought to have evolved from cowpox virus, but is now known to be most closely related to a poxvirus isolated from a horse. Of interest is the fact that of the various isolates of orthopox viruses, only variola, vaccinia and monkeypox viruses can infect humans. In contrast to the systemic disease of variola, vaccinia only replicates locally at the site of inoculation, and causes a localized DTH response that usually peaks after 7-10 days. This difference in the pathogenicity of variola vs. vaccinia is thought to be due to the capacity of variola to circumvent innate immunity, which allows it to disseminate widely before the adaptive immune response occurs. Thus, the fact that vaccinia virus is attenuated compared to variola, but is still replication competent, makes for its remarkable efficacy as a vaccine, as the localized infection activates all of the cells and molecules of both innate and adaptive immunity. Accordingly vaccinia itself, and not modified replication incompetent vaccina, is the hope for use as a vector in the eradication of additional pathogenic microbes from the globe.


Subject(s)
Disease Eradication , Smallpox/epidemiology , Smallpox/pathology , Variola virus/pathogenicity , Adaptive Immunity , Animals , History, 19th Century , History, 20th Century , Humans , Monkeypox virus , Smallpox/history , Vaccination , Variola virus/genetics
14.
Nano Lett ; 13(6): 2957-63, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23687903

ABSTRACT

Organic electronic materials have the potential to impact almost every aspect of modern life including how we access information, light our homes, and power personal electronics. Nevertheless, weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. Here, we demonstrate control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers. When utilized as the active layer of photovoltaic cells, block copolymer-based devices demonstrate efficient photoconversion well beyond devices composed of homopolymer blends. The 3% block copolymer device efficiencies are achieved without the use of a fullerene acceptor. X-ray scattering results reveal that the remarkable performance of block copolymer solar cells is due to self-assembly into mesoscale lamellar morphologies with primarily face-on crystallite orientations. Conjugated block copolymers thus provide a pathway to enhance performance in excitonic solar cells through control of donor-acceptor interfaces.

15.
J Clin Invest ; 123(6): 2604-15, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23676462

ABSTRACT

The inhibitory receptor programmed cell death 1 (PD-1) plays a major role in functional exhaustion of T cells during chronic infections and cancer, and recent clinical data suggest that blockade of the PD-1 pathway is an effective immunotherapy in treating certain cancers. Thus, it is important to define combinatorial approaches that increase the efficacy of PD-1 blockade. To address this issue, we examined the effect of IL-2 and PD-1 ligand 1 (PD-L1) blockade in the mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection. We found that low-dose IL-2 administration alone enhanced CD8+ T cell responses in chronically infected mice. IL-2 treatment also decreased inhibitory receptor levels on virus-specific CD8+ T cells and increased expression of CD127 and CD44, resulting in a phenotype resembling that of memory T cells. Surprisingly, IL-2 therapy had only a minimal effect on reducing viral load. However, combining IL-2 treatment with blockade of the PD-1 inhibitory pathway had striking synergistic effects in enhancing virus-specific CD8+ T cell responses and decreasing viral load. Interestingly, this reduction in viral load occurred despite increased numbers of Tregs. These results suggest that combined IL-2 therapy and PD-L1 blockade merits consideration as a regimen for treating human chronic infections and cancer.


Subject(s)
Arenaviridae Infections/drug therapy , B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/immunology , Interleukin-2/administration & dosage , Lymphocytic choriomeningitis virus/immunology , Animals , Antibodies/administration & dosage , Antibodies/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Chronic Disease , Drug Synergism , Female , Humans , Hyaluronan Receptors/metabolism , Immunologic Factors/administration & dosage , Immunologic Factors/pharmacology , Immunotherapy , Interleukin-2/pharmacology , Interleukin-7 Receptor alpha Subunit/metabolism , Lymphocyte Activation , Lymphocytic choriomeningitis virus/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Viral Load/drug effects , Viremia/drug therapy , Viremia/immunology , Viremia/virology
16.
Front Immunol ; 4: 79, 2013.
Article in English | MEDLINE | ID: mdl-23544031
17.
Front Immunol ; 3: 379, 2012.
Article in English | MEDLINE | ID: mdl-23248628
18.
Front Immunol ; 3: 364, 2012.
Article in English | MEDLINE | ID: mdl-23230441

ABSTRACT

By 1980 it was obvious that to more fully understand adaptive immunity, one needed to somehow reduce the tremendous complexity of antigen recognition by T cell populations. Thus, there were two developments that resulted in a paradigm shift in immunology, one being the generation of monoclonal antibodies (MoAbs), and the other the development of monoclonal functional antigen-specific T cell lines. For the first time, the cellular reagents became available to ask new questions as to how individual cells comprising the complex cell populations recognize and respond to changes in their molecular environments. The first successful generation of monoclonal T cells depended upon the understanding that antigen renders cells responsive to the antigen non-specific T cell growth factor that came to be termed interleukin-2 (IL-2), which could then be used in propagating large numbers of the progeny of single cells, which in turn could then be used for molecular analyses. Monoclonal functional human T cells were used to immunize mice to generate clone-specific (clonotypic) MoAbs, which then permitted the first biochemical characterizations of the antigen recognition elements of the T cell antigen receptor (TCR) complex. Moreover, the use of monoclonal cytolytic and helper/inducer human T cell clones essentially proved that the T cell-specific molecules T4 (CD4) and T8 (CD8) functioned as accessory molecules in antigen recognition by defining MHC class II or class I restriction respectively. As well, the expression of the T3 (CD3) molecules, found to be common to all T cells, were shown further to be obligatory for functional antigen-specific T cell signaling. The monoclonal IL-2-dependent T cells were also instrumental in the isolation and purification of the IL-2 molecule to homogeneity, the first interleukin molecule to be identified and characterized. These advances then led to the generation of pure radiolabeled IL-2 molecules that were used to identify the first interleukin cellular receptors, and as well the generation of the first MoAbs reactive with both IL-2 and IL-2 receptors. All of these advances led subsequently to the isolation of the first cDNA clones recognizing one of the two chains comprising the T cell antigen recognition elements (ß-chain), as well cDNA clones encoding IL-2. Accordingly, armed with all of these unique cellular and molecular reagents, it was possible to determine that antigen triggering of the TCR complex initiates IL-2 production and IL-2 receptor expression, which in turn initiate the T cell clonal proliferative expansion, envisioned by Burnet in his formulation of the clonal selection theory. Thus, adaptive immunity receives antigen-specific activation signals from the environment and turns them into antigen non-specific endogenous action signals.

19.
Front Immunol ; 3: 369, 2012.
Article in English | MEDLINE | ID: mdl-23230443

ABSTRACT

The adaptive immune system has been the core of immunology for the past century, as immunologists have been primarily focused on understanding the basis for adaptive immunity for the better part of this time. Immunological thought has undergone an evolution with regard to our understanding as the complexity of the cells and the molecules of the system became elucidated. The original immunologists performed their experiments with whole animals (or humans), and for the most part they were focused on observing what happens when a foreign substance is introduced into the body. However, since Burnet formulated his clonal selection theory we have witnessed reductionist science focused first on cell populations, then individual cells and finally on molecules, in our quests to learn how the system works. This review is the first part of a chronology of our evolution toward a molecular understanding of adaptive immunity.

20.
Front Immunol ; 3: 1, 2012.
Article in English | MEDLINE | ID: mdl-22679445
SELECTION OF CITATIONS
SEARCH DETAIL