Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Behav Neurosci ; 56: 113-124, 2022.
Article in English | MEDLINE | ID: mdl-34761362

ABSTRACT

Ayahuasca, the vine of the souls in Quechua, is a psychedelic brew with a few formulations that most often include the bark of a liana in the Malpighiaceae family (Banisteriopsis caapi), with leaves from a shrub in the coffee family Rubiaceae (Psychotria viridis). Mixed with water and boiled for hours or days, it produces a brownish-colored liquid with a strong and characteristic taste. Ayahuasca contains the psychedelic tryptamine N,N-Dimethyltryptamine (DMT), and Monoamine Oxidase Inhibitors (MAOi), and in the past few years, it has been tested. In recent years its antidepressant properties have been put to the test. Evidence from open and randomized placebo-controlled clinical trials has shown encouraging results, indicating significant and rapid antidepressant effects, starting as early as 1 day after the ayahuasca intervention. In addition, we have explored the nature of these effects using multivariate measures. In this article, we will review the history, pharmacology, clinical trials, and clinical and behavioral markers associated with the antidepressant effects of ayahuasca.


Subject(s)
Banisteriopsis , Hallucinogens , Depression , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , N,N-Dimethyltryptamine/pharmacology , N,N-Dimethyltryptamine/therapeutic use
2.
Br J Pharmacol ; 171(18): 4289-99, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24846744

ABSTRACT

BACKGROUND AND PURPOSE: Transient receptor potential vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) are involved in many biological processes, including nociception and hyperalgesia. Whereas the involvement of TRPV1 in psychiatric disorders such as anxiety and depression has been reported, little is known regarding the role of TRPA1 in these conditions. EXPERIMENTAL APPROACH: We investigated the role of TRPA1 in mice models of depression [forced swimming test (FST)] and anxiety [elevated plus maze (EPM) test]. KEY RESULTS: Administration of the TRPA1 antagonist (HC030031, 30 nmol in 2 µL, i.c.v.) reduced immobility time in the FST. Similar results were obtained after oral administration of HC030031 (30-300 mg·kg(-1) ). The reduction in immobility time in FST induced by HC030031 (100 mg·kg(-1) ) was completely prevented by pretreatment with TRPA1 agonist, cinnamaldehyde (50 mg·kg(-1) , p.o.), which per se was inactive. In the EPM test, pretreatment with cinnamaldehyde (50 mg·kg(-1) , p.o.), which per se did not affect behaviour response, prevented the anxiolytic-like effect (increased open arm exploration) evoked by TRPA1 blockade (HC030031, 100 mg·kg(-1) , p.o.). Treatment with either cinnamaldehyde or HC030031 did not affect spontaneous ambulation. Furthermore, TRPA1-deficient mice showed anxiolytic- and antidepressant-like phenotypes in the FST and EPM test respectively. CONCLUSION AND IMPLICATIONS: The present findings indicate that genetic deletion or pharmacological blockade of TRPA1 produces inhibitory activity in mouse models of anxiety and depression. These results imply that TRPA1 exerts tonic control, promoting anxiety and depression, and that TRPA1 antagonism has potential as an innovative strategy for the treatment of anxiety and mood disorders.


Subject(s)
Anxiety/physiopathology , Depression/physiopathology , Transient Receptor Potential Channels/physiology , Acetanilides/pharmacology , Acrolein/analogs & derivatives , Acrolein/pharmacology , Animals , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Behavior, Animal , Diazepam/pharmacology , Disease Models, Animal , Male , Mice, Knockout , Nortriptyline/pharmacology , Purines/pharmacology , Signal Transduction , Swimming , TRPA1 Cation Channel , Transient Receptor Potential Channels/antagonists & inhibitors , Transient Receptor Potential Channels/genetics
3.
Behav Brain Res ; 162(2): 173-81, 2005 Jul 30.
Article in English | MEDLINE | ID: mdl-15970215

ABSTRACT

Although many studies have investigated the function of cellular prion protein (PrPc), its physiologic role remains elusive. PrPc null mice have been reported to develop normally and to show normal performance in most behavioural tests. In the present study we investigated whether this also holds true after episodes of acute stress. PrPc gene ablated (Prnp0/0) and wild-type mice were subjected to restraint stress, electric foot shock, or swimming and compared with non-stressed animals. Immediately after the stressful situation, the anxiety levels and locomotion of the animals were measured using plus-maze and open-field tests. Among non-stressed animals, there was no significant difference in performance between Prnp0/0 and wild type animals in either test. However, after acute stress provoked by a foot shock or a swimming trial, Prnp0/0 animals showed a significant decrease in anxiety levels when compared with control animals. Moreover, after the swimming test, knockout mice presented decreased locomotion when compared to wild-type mice. Because of this observation, we also assessed both types of mice in a forced swimming test with the objective of better evaluating muscle function and found that Prnp0/0 animals presented reduced forced swimming capacity when compared to controls. As far as we know, this is the first report suggesting that cellular prion protein is involved in modulation of anxiety or muscular activity after acute psychic or physical stress.


Subject(s)
Behavior, Animal/physiology , PrPC Proteins/deficiency , Stress, Psychological/genetics , Stress, Psychological/physiopathology , Analysis of Variance , Animals , Electroshock/methods , Exploratory Behavior/physiology , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Reaction Time/radiation effects , Restraint, Physical/methods , Swimming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL