Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Int J Mol Sci ; 24(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36901723

ABSTRACT

The expression of glypicans in different hair follicle (HF) compartments is still poorly understood. Heparan sulfate proteoglycans (HSPGs) distribution in HF is classically investigated by conventional histology, biochemical analysis, and immunohistochemistry. Our previous study proposed a novel approach to assess hair histology and glypican-1 (GPC1) distribution changes in the HF at different phases of the hair growth cycle using infrared spectral imaging (IRSI). We show in the present manuscript for the first time complementary data on the distribution of glypican-4 (GPC4) and glypican-6 (GPC6) in HF at different phases of the hair growth cycle using IR imaging. Findings were supported by Western blot assays focusing on the GPC4 and GPC6 expression in HFs. Like all proteoglycan features, the glypicans are characterized by a core protein to which sulfated and/or unsulfated glycosaminoglycan (GAG) chains are covalently linked. Our study demonstrates the capacity of IRSI to identify the different HF tissue structures and to highlight protein, proteoglycan (PG), GAG, and sulfated GAG distribution in these structures. The comparison between anagen, catagen, and telogen phases shows the qualitative and/or quantitative evolution of GAGs, as supported by Western blot. Thus, in one analysis, IRSI can simultaneously reveal the location of proteins, PGs, GAGs and sulfated GAGs in HFs in a chemical and label-free manner. From a dermatological point of view, IRSI may constitute a promising technique to study alopecia.


Subject(s)
Glypicans , Heparan Sulfate Proteoglycans , Glypicans/metabolism , Heparan Sulfate Proteoglycans/metabolism , Hair/metabolism , Hair Follicle/metabolism
2.
Cancers (Basel) ; 13(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34885059

ABSTRACT

Ovarian cancer remains one of the most fatal cancers due to a lack of robust screening methods of detection at early stages. Extracellular matrix (ECM) mediates interactions between cancer cells and their microenvironment via specific molecules. Lumican, a small leucine-rich proteoglycan (SLRP), maintains ECM integrity and inhibits both melanoma primary tumor development, as well as metastatic spread. The aim of this study was to analyze the effect of lumican on tumor growth of murine ovarian epithelial cancer. C57BL/6 wild type mice (n = 12) and lumican-deficient mice (n = 10) were subcutaneously injected with murine ovarian epithelial carcinoma ID8 cells, and then sacrificed after 18 days. Analysis of tumor volumes demonstrated an inhibitory effect of endogenous lumican on ovarian tumor growth. The ovarian primary tumors were subjected to histological and immunohistochemical staining using anti-lumican, anti-αv integrin, anti-CD31 and anti-cyclin D1 antibodies, and then further examined by label-free infrared spectral imaging (IRSI), second harmonic generation (SHG) and Picrosirius red staining. The IR tissue images allowed for the identification of different ECM tissue regions of the skin and the ovarian tumor. Moreover, IRSI showed a good correlation with αv integrin immunostaining and collagen organization within the tumor. Our results demonstrate that lumican inhibits ovarian cancer growth mainly by altering collagen fibrilogenesis.

3.
Endosc Int Open ; 9(2): E203-E209, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33553582

ABSTRACT

Background and study aims White bile is defined as a colorless fluid occasionally found in the biliary tract of patients with bile duct obstruction. Its significance is not clearly established. Our objective was to analyze the prognostic value of white bile in a series of patients with biliary obstruction due to biliary or pancreatic cancer. Patients and methods The study was conducted on a series of consecutive patients with malignant obstructive jaundice. They all underwent endoscopic retrograde cholangiopancreatography with collection of bile and biliary stent insertion. White bile was defined as bile duct fluid with bilirubin level < 20 µmol/L. Univariate and multivariate analyses were performed to identify variables associated with overall survival (OS). Results Seventy-three patients were included (32 pancreatic cancers, 41 bile duct cancers). Thirty-nine (53.4 %) had white bile. The mean bile duct bilirubin level in this group was 4.2 ±â€Š5.9 µmol/L vs 991 ±â€Š1039 µmol/L in patients with colored bile (P < 0.0001). In the group of 54 patients not eligible for surgery, the multivariate analysis demonstrated an association between the presence of white bile and reduced OS (HR 2.3, 95 %CI 1.1-4.7; P = 0.02). Other factors independently associated with OS were metastatic extension (HR 2.8, 95 %CI 1.4-5.7) and serum total bilirubin (HR 1.003, 95 %CI 1.001-1.006). There was a significant inverse correlation between serum and bile duct bilirubin levels (r = -0.43, P = 0.0001). Conclusion White bile in patients with inoperable malignant biliary obstruction is an independent factor of poor survival.

4.
Biomolecules ; 11(2)2021 01 30.
Article in English | MEDLINE | ID: mdl-33573119

ABSTRACT

The expression of glypicans in different hair follicle (HF) compartments and their potential roles during hair shaft growth are still poorly understood. Heparan sulfate proteoglycan (HSPG) distribution in HFs is classically investigated by conventional histology, biochemical analysis, and immunohistochemistry. In this report, a novel approach is proposed to assess hair histology and HSPG distribution changes in HFs at different phases of the hair growth cycle using infrared spectral imaging (IRSI). The distribution of HSPGs in HFs was probed by IRSI using the absorption region relevant to sulfation as a spectral marker. The findings were supported by Western immunoblotting and immunohistochemistry assays focusing on the glypican-1 expression and distribution in HFs. This study demonstrates the capacity of IRSI to identify the different HF tissue structures and to highlight protein, proteoglycan (PG), glycosaminoglycan (GAG), and sulfated GAG distribution in these structures. The comparison between anagen, catagen, and telogen phases shows the qualitative and/or quantitative evolution of GAGs as supported by Western immunoblotting. Thus, IRSI can simultaneously reveal the location of proteins, PGs, GAGs, and sulfated GAGs in HFs in a reagent- and label-free manner. From a dermatological point of view, IRSI shows its potential as a promising technique to study alopecia.


Subject(s)
Glycosaminoglycans/metabolism , Glypicans/metabolism , Hair/growth & development , Heparan Sulfate Proteoglycans/metabolism , Algorithms , Alopecia/diagnosis , Alopecia/prevention & control , Biopsy , Blotting, Western , Cluster Analysis , Dermatology , Extracellular Matrix Proteins , Hair/metabolism , Hair Follicle/metabolism , Humans , Immunoblotting , Immunohistochemistry , Principal Component Analysis , Spectrophotometry, Infrared/methods
5.
J Biophotonics ; 14(3): e202000327, 2021 03.
Article in English | MEDLINE | ID: mdl-33231348

ABSTRACT

Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease which can lead to a prolonged physical disability. HS diagnosis is exclusively clinical with the absence of biomarkers. Our study aims at assessing the HS-diagnostic potential of infrared spectroscopy from saliva, as a biofluid reflecting the body's pathophysiological state. Infrared spectra from 127 patients (57 HS and 70 non-HS) were processed by multivariate methods: principal component analysis coupled with Kruskal-Wallis or Mann-Whitney tests to identify discriminant spectral wavenumbers and linear discriminant analysis to evaluate the performances of HS-diagnostic approach. Infrared features, mainly in the 1300 cm-1 -1600 cm-1 region, were identified as discriminant for HS and prediction models revealed diagnostic performances of about 80%. Tobacco and obesity, two main HS risk factors, do not seem to alter the infrared diagnosis. This pilot study shows the potential of salivary "liquid biopsy" associated to vibrational spectroscopy to develop a personalized medical approach for HS patients' management.


Subject(s)
Hidradenitis Suppurativa , Biomarkers , Discriminant Analysis , Hidradenitis Suppurativa/diagnosis , Humans , Pilot Projects , Principal Component Analysis
6.
Molecules ; 25(18)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906799

ABSTRACT

The evolution of cirrhosis is marked by quantitative and qualitative modifications of the fibrosis tissue and an increasing risk of complications such as hepatocellular carcinoma (HCC). Our purpose was to identify by FTIR imaging the spectral characteristics of hepatic fibrosis in cirrhotic patients with and without HCC. FTIR images were collected at projected pixel sizes of 25 and 2.7 µm from paraffinized hepatic tissues of five patients with uncomplicated cirrhosis and five cirrhotic patients with HCC and analyzed by k-means clustering. When compared to the adjacent histological section, the spectral clusters corresponding to hepatic fibrosis and regeneration nodules were easily identified. The fibrosis area estimated by FTIR imaging was correlated to that evaluated by digital image analysis of histological sections and was higher in patients with HCC compared to those without complications. Qualitative differences were also observed when fibrosis areas were specifically targeted at higher resolution. The partition in two clusters of the fibrosis tissue highlighted subtle differences in the spectral characteristics of the two groups of patients. These data show that the quantitative and qualitative changes of fibrosis tissue occurring during the course of cirrhosis are detectable by FTIR imaging, suggesting the possibility of subclassifying cirrhosis into different steps of severity.


Subject(s)
Diagnostic Imaging , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/pathology , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Spectroscopy, Fourier Transform Infrared , Biopsy , Diagnostic Imaging/methods , Humans , Image Processing, Computer-Assisted , Liver Cirrhosis/complications , Liver Neoplasms/etiology , Spectroscopy, Fourier Transform Infrared/methods , Tumor Burden
7.
Molecules ; 25(18)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927716

ABSTRACT

Saliva is a biofluid that can be considered as a "mirror" reflecting our body's health status. Vibrational spectroscopy, Raman and infrared, can provide a detailed salivary fingerprint that can be used for disease biomarker discovery. We propose a systematic literature review based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to evaluate the potential of vibrational spectroscopy to diagnose oral and general diseases using saliva as a biological specimen. Literature searches were recently conducted in May 2020 through MEDLINE-PubMed and Scopus databases, without date limitation. Finally, over a period of 10 years, 18 publications were included reporting on 10 diseases (three oral and seven general diseases), with very high diagnostic performance rates in terms of sensitivity, specificity, and accuracy. Thirteen articles were related to six different cancers of the following anatomical sites: mouth, nasopharynx, lung, esophagus, stomach, and breast. The other diseases investigated and included in this review were periodontitis, Sjögren's syndrome, diabetes, and myocardial infarction. Moreover, most articles focused on Raman spectroscopy (n = 16/18) and more specifically surface-enhanced Raman spectroscopy (n = 12/18). Interestingly, vibrational spectroscopy appears promising as a rapid, label-free, and non-invasive diagnostic salivary biometric tool. Furthermore, it could be adapted to investigate subclinical diseases-even if developmental studies are required.


Subject(s)
Biomarkers , Biometry , Molecular Diagnostic Techniques , Saliva/chemistry , Spectrum Analysis, Raman , Animals , Biometry/methods , Humans , Metabolomics/methods , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman/methods
8.
Molecules ; 25(18)2020 Sep 19.
Article in English | MEDLINE | ID: mdl-32961706

ABSTRACT

Glycosaminoglycans (GAGs)/proteoglycans (PGs) play a pivotal role in the metastasis of inflammatory breast cancer (IBC). They represent biomarkers and targets in diagnosis and treatment of different cancers including breast cancer. Thus, GAGs/PGs could represent potential prognostic/diagnostic biomarkers for IBC. In the present study, non-IBC MDA-MB-231, MCF7, SKBR3 cells and IBC SUM149 cells, as well as their GAG secretome were analyzed. The latter was measured in toto as dried drops with high-throughput (HT) Fourier Transform InfraRed (FTIR) spectroscopy and imaging. FTIR imaging was also employed to investigate single whole breast cancer cells while synchrotron-FTIR microspectroscopy was used to specifically target their cytoplasms. Data were analyzed by hierarchical cluster analysis and principal components analysis. Results obtained from HT-FTIR analysis of GAG drops showed that the inter-group variability enabled us to delineate between cell types in the GAG absorption range 1350-800 cm-1. Similar results were obtained for FTIR imaging of GAG extracts and fixed single whole cells. Synchrotron-FTIR data from cytoplasms allowed discrimination between non-IBC and IBC. Thus, by using GAG specific region, not only different breast cancer cell lines could be differentiated, but also non-IBC from IBC cells. This could be a potential diagnostic spectral marker for IBC detection useful for patient management.


Subject(s)
Glycosaminoglycans/metabolism , Image Processing, Computer-Assisted , Spectroscopy, Fourier Transform Infrared , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cluster Analysis , Culture Media, Conditioned/chemistry , Female , Humans , Principal Component Analysis
9.
Ther Adv Med Oncol ; 12: 1758835920918499, 2020.
Article in English | MEDLINE | ID: mdl-32821294

ABSTRACT

BACKGROUND: Screening for prostate cancer with prostate specific antigen and digital rectal examination allows early diagnosis of prostate malignancy but has been associated with poor sensitivity and specificity. There is also a considerable risk of over-diagnosis and over-treatment, which highlights the need for better tools for diagnosis of prostate cancer. This study investigates the potential of high throughput Raman and Fourier Transform Infrared (FTIR) spectroscopy of liquid biopsies for rapid and accurate diagnosis of prostate cancer. METHODS: Blood samples (plasma and lymphocytes) were obtained from healthy control subjects and prostate cancer patients. FTIR and Raman spectra were recorded from plasma samples, while Raman spectra were recorded from the lymphocytes. The acquired spectral data was analysed with various multivariate statistical methods, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and classical least squares (CLS) fitting analysis. RESULTS: Discrimination was observed between the infrared and Raman spectra of plasma and lymphocytes from healthy donors and prostate cancer patients using PCA. In addition, plasma and lymphocytes displayed differentiating signatures in patients exhibiting different Gleason scores. A PLS-DA model was able to discriminate these groups with sensitivity and specificity rates ranging from 90% to 99%. CLS fitting analysis identified key analytes that are involved in the development and progression of prostate cancer. CONCLUSIONS: This technology may have potential as an alternative first stage diagnostic triage for prostate cancer. This technology can be easily adaptable to many other bodily fluids and could be useful for translation of liquid biopsy-based diagnostics into the clinic.

10.
Front Cell Dev Biol ; 8: 377, 2020.
Article in English | MEDLINE | ID: mdl-32548117

ABSTRACT

Melanoma is the most aggressive type of cutaneous malignancies. In addition to its role as a regulator of extracellular matrix (ECM) integrity, lumican, a small leucine-rich proteoglycan, also exhibits anti-tumor properties in melanoma. This work focuses on the use of infrared spectral imaging (IRSI) and histopathology (IRSH) to study the effect of lumican-derived peptide (L9Mc) on B16F1 melanoma primary tumor growth. Female C57BL/6 mice were injected with B16F1 cells treated with L9Mc (n = 10) or its scrambled peptide (n = 8), and without peptide (control, n = 9). The melanoma primary tumors were subjected to histological and IR imaging analysis. In addition, immunohistochemical staining was performed using anti-Ki-67 and anti-cleaved caspase-3 antibodies. The IR images were analyzed by common K-means clustering to obtain high-contrast IRSH that allowed identifying different ECM tissue regions from the epidermis to the tumor area, which correlated well with H&E staining. Furthermore, IRSH showed good correlation with immunostaining data obtained with anti-Ki-67 and anti-cleaved caspase-3 antibodies, whereby the L9Mc peptide inhibited cell proliferation and increased strongly apoptosis of B16F1 cells in this mouse model of melanoma primary tumors.

11.
Front Cell Dev Biol ; 8: 320, 2020.
Article in English | MEDLINE | ID: mdl-32478070

ABSTRACT

Proteoglycans (PG) play an important role in maintaining the extracellular matrix (ECM) integrity. Lumican, a small leucine rich PG, is one such actor capable of regulating such properties. In this study, the integrity of the dermis of lumican-deleted Lum -/- vs. wild-type mice was investigated by conventional histology and by infrared spectral histology (IRSH). Infrared spectroscopy is a non-invasive, rapid, label-free and sensitive technique that allows to probe molecular vibrations of biomolecules present in a tissue. Our IRSH results obtained on control (WT, n = 3) and Lum -/- (n = 3) mice showed that different histological structures were identified by using K-means clustering and validated by hematoxylin eosin saffron (HES) staining. Furthermore, an important increase of the dermis thickness was observed in Lum -/- compared to WT mice. In terms of structural information, analysis of the spectral images also revealed an intra-group homogeneity and inter-group heterogeneity. In addition, type I collagen contribution was evaluated by HES and picrosirius red staining as well as with IRSH. Both techniques showed a strong remodeling of the ECM in Lum -/- mice due to the looseness of collagen fibers in the increased dermis space. These results confirmed the impact of lumican on the ECM integrity. The loss of collagen fibers organization due to the absence of lumican can potentially increase the accessibility of anti-cancer drugs to the tumor. These results are qualitatively interesting and would need further structural characterization of type I collagen fibers in terms of size, organization, and orientation.

12.
J Biophotonics ; 13(7): e201960173, 2020 07.
Article in English | MEDLINE | ID: mdl-32162465

ABSTRACT

Hemolysis is a very common phenomenon and is referred as the release of intracellular components from red blood cells to the extracellular fluid. Hemolyzed samples are often rejected in clinics due to the interference of hemoglobin and intracellular components in laboratory measurements. Plasma and serum based vibrational spectroscopy studies are extensively applied to generate spectral biomarkers for various diseases. However, no studies have reported the effect of hemolysis in blood based vibrational spectroscopy studies. This study was undertaken to evaluate the effect of hemolysis on infrared and Raman spectra of blood plasma. In this study, prostate cancer plasma samples (n = 30) were divided into three groups (nonhemolyzed, mildly hemolyzed, and moderately hemolyzed) based on the degree of hemolysis and FTIR and Raman spectra were recorded using high throughput (HT)-FTIR and HT-Raman spectroscopy. Discrimination was observed between the infrared and Raman spectra of nonhemolyzed and hemolyzed plasma samples using principal component analysis. A classical least square fitting analysis showed differences in the weighting of pure components in nonhemolyzed and hemolyzed plasma samples. Therefore, it is worth to consider the changes in spectral features due to hemolysis when comparing the results within and between experiments.


Subject(s)
Hemolysis , Plasma , Fourier Analysis , Humans , Male , Principal Component Analysis , Serum , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
13.
Anal Chem ; 92(5): 4053-4064, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32045217

ABSTRACT

Surface-enhanced Raman scattering (SERS) is a powerful and sensitive technique for the detection of fingerprint signals of molecules and for the investigation of a series of surface chemical reactions. Many studies introduced quantitative applications of SERS in various fields, and several SERS methods have been implemented for each specific application, ranging in performance characteristics, analytes used, instruments, and analytical matrices. In general, very few methods have been validated according to international guidelines. As a consequence, the application of SERS in highly regulated environments is still considered risky, and the perception of a poorly reproducible and insufficiently robust analytical technique has persistently retarded its routine implementation. Collaborative trials are a type of interlaboratory study (ILS) frequently performed to ascertain the quality of a single analytical method. The idea of an ILS of quantification with SERS arose within the framework of Working Group 1 (WG1) of the EU COST Action BM1401 Raman4Clinics in an effort to overcome the problematic perception of quantitative SERS methods. Here, we report the first interlaboratory SERS study ever conducted, involving 15 laboratories and 44 researchers. In this study, we tried to define a methodology to assess the reproducibility and trueness of a quantitative SERS method and to compare different methods. In our opinion, this is a first important step toward a "standardization" process of SERS protocols, not proposed by a single laboratory but by a larger community.

14.
Appl Spectrosc ; 74(5): 544-552, 2020 May.
Article in English | MEDLINE | ID: mdl-32031010

ABSTRACT

Fourier transform infrared (FT-IR) spectroscopic imaging and microscopy of single living cells are established label-free technique for the study of cell biology. The constant driver to improve the spatial resolution of the technique is due to the diffraction limit given by infrared (IR) wavelength making subcellular study challenging. Recently, we have reported, with the use of a prototype zinc sulfide (ZnS) transmission cell made of two hemispheres, that the spatial resolution is improved by the factor of the refractive index of ZnS, achieving a λ/2.7 spatial resolution using the synchrotron-IR microscopy with a 36× objective with numerical aperture of 0.5. To refine and to demonstrate that the ZnS hemisphere transmission device can be translated to standard bench-top FT-IR imaging systems, we have, in this work, modified the device to achieve a more precise path length, which has improved the spectral quality of the living cells, and showed for the first time that the device can be applied to study live cells with three different bench-top FT-IR imaging systems. We applied focal plane array (FPA) imaging, linear array, and a synchrotron radiation single-point scanning method and demonstrated that in all cases, subcellular details of individual living cells can be obtained. Results have shown that imaging with the FPA detector can measure the largest area in a given time, while measurements from the scanning methods produced a smoother image. Synchrotron radiation single-point mapping produced the best quality image and has the flexibility to introduce over sampling to produce images of cells with great details, but it is time consuming in scanning mode. In summary, this work has demonstrated that the ZnS hemispheres can be applied in all three spectroscopic approaches to improve the spatial resolution without any modification to the existing microscopes.


Subject(s)
Spectroscopy, Fourier Transform Infrared/instrumentation , Spectroscopy, Fourier Transform Infrared/methods , A549 Cells , Humans , Lenses , Microscopy, Electron, Scanning/instrumentation , Microscopy, Electron, Scanning/methods , Sulfides/chemistry , Synchrotrons/instrumentation , Zinc Compounds/chemistry
15.
Anal Bioanal Chem ; 412(4): 805-810, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31858169

ABSTRACT

Recently, pre-analytical, analytical, and post-analytical issues have been addressed to implement biofluid FTIR spectroscopy as a novel diagnostic tool in the clinical setting. Although hemolysis, icterus, and hyperlipidemia are known to interfere with colorimetric and turbidimetric biochemical methods, there are no data on their impact on serum/plasma FTIR spectra. This study aimed at investigating the impact of hemoglobin, bilirubin, and triglycerides concentrations on plasma spectral analysis. Plasma samples with high concentrations of hemoglobin, conjugated bilirubin, or triglycerides were studied. To mimic the various concentrations observed in clinical setting, samples were diluted using normal plasma and analyzed using high-throughput FTIR spectroscopy. Hemolytic, icteric, and hyperlipidemic plasma spectra were compared with control plasma spectra. Unsupervised analysis of all spectra was performed using principal component analysis. The comparison between control and hemolytic plasmas did not show spectral differences in the range of hemoglobin concentrations observed in spurious or pathological hemolysis. By contrast, spectra from lipidemic plasmas had different spectral profiles compared with control plasma, exhibiting increased absorbance in lipid bands. Differences in the same spectral regions were observed in spectra from icteric plasma, which may be explained by the hyperlipidemia associated with cholestasis. PCA did not discriminate between control and hemolytic plasmas up to 1 g/L hemoglobin but confirmed the interference of bilirubin and triglycerides concentrations on spectral classification. Our results show that hemolysis does not have an impact on the plasma spectral profile except for high concentrations of hemoglobin rarely observed in clinical practice, whereas icterus and hyperlipidemia constitute significant confounding factors. Graphical abstract.


Subject(s)
Plasma/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Bilirubin/blood , Hemoglobins/analysis , Hemolysis , Humans , Hyperlipidemias/blood , Jaundice/blood , Triglycerides/blood
16.
J Biophotonics ; 12(12): e201900177, 2019 12.
Article in English | MEDLINE | ID: mdl-31276294

ABSTRACT

Infrared spectroscopy is a rapid, easy-to-operate, label-free and therefore cost-effective technique. Many studies performed on biofluids (eg, serum, plasma, urine, sputum, bile and cerebrospinal fluid) have demonstrated its promising application as a clinical diagnostic tool. Given all these characteristics, infrared spectroscopy appears to be an ideal candidate to be implemented into the clinics. However, before considering its translation, a clear effort is needed to standardise protocols for biofluid spectroscopic analysis. To reach this goal, careful investigations to identify and track errors that can occur during the pre-analytical phase is a crucial step. Here, we report for the first time, results of investigations into pre-analytical factors that can affect the quality of the spectral data acquired on serum and plasma, such as the impact of long-term freezing time storage of samples as well as the month-to-month reproducibility of the spectroscopic analysis. The spectral data discrimination has revealed to be majorly impacted by a residual water content variation in serum and plasma dried samples.


Subject(s)
Blood Chemical Analysis/methods , Plasma/chemistry , Serum/chemistry , Spectrophotometry, Infrared , Analytic Sample Preparation Methods , Humans , Humidity , Water/chemistry
17.
Cancers (Basel) ; 11(7)2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31269684

ABSTRACT

Radiation therapy (RT) is used to treat approximately 50% of all cancer patients. However, RT causes a wide range of adverse late effects that can affect a patient's quality of life. There are currently no predictive assays in clinical use to identify patients at risk of normal tissue radiation toxicity. This study aimed to investigate the potential of Fourier transform infrared (FTIR) spectroscopy for monitoring radiotherapeutic response. Blood plasma was acquired from 53 prostate cancer patients at five different time points: prior to treatment, after hormone treatment, at the end of radiotherapy, two months post radiotherapy and eight months post radiotherapy. FTIR spectra were recorded from plasma samples at all time points and the data was analysed using MATLAB software. Discrimination was observed between spectra recorded at baseline versus follow up time points, as well as between spectra from patients showing minimal and severe acute and late toxicity using principal component analysis. A partial least squares discriminant analysis model achieved sensitivity and specificity rates ranging from 80% to 99%. This technology may have potential to monitor radiotherapeutic response in prostate cancer patients using non-invasive blood plasma samples and could lead to individualised patient radiotherapy.

18.
J Biophotonics ; 12(4): e201800290, 2019 04.
Article in English | MEDLINE | ID: mdl-30578586

ABSTRACT

Liver sinusoidal endothelial cells (LSECs), a type of endothelial cells with unique morphology and function, play an important role in the liver hemostasis, and LSECs dysfunction is involved in the development of nonalcoholic fatty liver disease (NAFLD). Here, we employed Raman imaging and chemometric data analysis in order to characterize the presence of lipid droplets (LDs) and their lipid content in primary murine LSECs, in comparison with hepatocytes, isolated from mice on high-fat diet. On NAFLD development, LDs content in LSECs changed toward more unsaturated lipids, and this response was associated with an increased expression of stearylo-CoA desaturase-1. To the best of our knowledge, this is a first report characterizing LDs in LSECs, where their chemical composition is analyzed along the progression of NAFLD at the level of single LD using Raman imaging.


Subject(s)
Endothelial Cells/cytology , Hepatocytes/cytology , Lipid Droplets/metabolism , Liver/cytology , Molecular Imaging , Spectrum Analysis, Raman , Animals , Disease Progression , Liver/diagnostic imaging , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology
19.
Analyst ; 143(24): 6103-6112, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30468236

ABSTRACT

Inflammatory breast cancer (IBC) has a poor prognosis because of the lack of specific biomarkers and its late diagnosis. An accurate and rapid diagnosis implemented early enough can significantly improve the disease outcome. Vibrational spectroscopy has proven to be useful for cell and tissue characterization based on the intrinsic molecular information. Here, we have applied infrared and Raman microspectroscopy and imaging to differentiate between non-IBC and IBC at both cell and tissue levels. Two human breast cancer cell lines (MDA-MB-231 and SUM-149), 20 breast cancer patients (10 non-IBC and 10 IBC), and 4 healthy volunteer biopsies were investigated. Fixed cells and tissues were analyzed by FTIR microspectroscopy and imaging, while live cells were studied by Raman microspectroscopy. Spectra were analyzed by hierarchical cluster analysis (HCA) and images by common k-means clustering algorithms. For both cell suspensions and single cells, FTIR spectroscopy showed sufficient high inter-group variability to delineate MDA-MB-231 and SUM-149 cell lines. Most significant differences were observed in the spectral regions of 1096-1108 and 1672-1692 cm-1. Analysis of live cells by Raman microspectroscopy gave also a good discrimination of these cell types. The most discriminant regions were 688-992, 1019-1114, 1217-1375 and 1516-1625 cm-1. Finally, k-means cluster analysis of FTIR images allowed delineating non-IBC from IBC tissues. This study demonstrates the potential of vibrational spectroscopy and imaging to discriminate between non-IBC and IBC at both cell and tissue levels.


Subject(s)
Inflammatory Breast Neoplasms/diagnosis , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Adult , Aged , Algorithms , Cell Line, Tumor , Cluster Analysis , Female , Humans , Inflammatory Breast Neoplasms/chemistry , Middle Aged , Single-Cell Analysis/methods , Vibration
20.
Sci Rep ; 7: 40448, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102326

ABSTRACT

Confocal Raman microspectroscopy was used to study the interaction between pulsed electric fields and live cells from a molecular point of view in a non-invasive and label-free manner. Raman signatures of live human adipose-derived mesenchymal stem cells exposed or not to pulsed electric fields (8 pulses, 1 000 V/cm, 100 µs, 1 Hz) were acquired at two cellular locations (nucleus and cytoplasm) and two spectral bands (600-1 800 cm-1 and 2 800-3 100 cm-1). Vibrational modes of proteins (phenylalanine and amide I) and lipids were found to be modified by the electropermeabilization process with a statistically significant difference. The relative magnitude of four phenylalanine peaks decreased in the spectra of the pulsed group. On the contrary, the relative magnitude of the amide I band at 1658 cm-1 increased by 40% when comparing pulsed and control group. No difference was found between the control and the pulsed group in the high wavenumber spectral band. Our results reveal the modification of proteins in living cells exposed to pulsed electric fields by means of confocal Raman microspectroscopy.


Subject(s)
Electroporation/methods , Mesenchymal Stem Cells/metabolism , Proteins/metabolism , Spectrum Analysis, Raman/methods , Adipose Tissue/cytology , Cell Count , Cell Survival , Electrodes , Humans , Mesenchymal Stem Cells/cytology , Microscopy, Fluorescence , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...