Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 766
Filter
1.
Anal Bioanal Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958704

ABSTRACT

In order to find an explanation for the mechanism in a plasma operated with an alternating voltage, or rather a square wave voltage, such a plasma was investigated. It was found that Penning ionization, charge transfer, and photoionization played a minor or even no role in the soft ionization mechanism of a FµTP. If the collision of plasma gases with air does not contribute to soft ionization, it should also be possible to use a separated plasma for soft ionization. Preliminary investigations show that it is possible to ignite a diagnosis gas with a plasma gas even when there is a barrier such as glass between those gases. A temporally and locally limited potential must be produced at the outer surface to achieve this. This potential should be sufficient to ionize the environment softly and to be able to use this so-called closed µ-tube plasma as a new ionization source.

2.
Front Oncol ; 14: 1371594, 2024.
Article in English | MEDLINE | ID: mdl-38962262

ABSTRACT

Objectives: Lung cancer is the leading cause of cancer death, and 80-85% of all lung cancer cases are non-small cell lung cancer (NSCLC). Surgical resection is the standard treatment for early-stage NSCLC. However, lung resection, a surgical procedure, can result in complications and increased mortality. Recent studies have shown a significant correlation between complications after lung resection and right ventricular dysfunction. Methods: Transthoracic echocardiography-derived right ventricular-pulmonary artery coupling (RV-PAC) was utilized to assess right ventricular function in these patients. Multivariate logistic regression analysis was also conducted to assess risk factors independently associated with RV-PA uncoupling. The 3- and 5-year cumulative survival rates were estimated with Kaplan-Meier curves, and differences between groups were analyzed using the Mantel-Cox log-rank test. Results: RV-PA uncoupling was defined as a TAPSE/PASP value < 0.67 mm/mm Hg according to spline analysis. The results of multivariable logistic regression analysis indicated that diabetes is an independent risk factor for right ventricular dysfunction after lung resection in patients with NSCLC. Kaplan-Meier analysis revealed a significant decrease in the survival rate of patients with RV-PA uncoupling at both the 3-year follow-up (73% vs 40%, p < 0.001) and 5-year follow-up (64% vs 37%, p < 0.001). Conclusions: After lung resection for NSCLC, the patient's right ventricular function predicts prognosis. Patients with right ventricular dysfunction, particularly those with diabetes mellitus, have a worse prognosis. It is crucial to actively prevent and correct risk factors to reduce the mortality rate in these patients.

3.
aBIOTECH ; 5(2): 247-261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974861

ABSTRACT

Genome editing holds great promise for the molecular breeding of plants, yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants. Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture, a labor-intensive and technically challenging process for many elite crop cultivars. In this review, we describe various virus-based methods that have been employed to deliver genome editing reagents, including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants. We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species, highlight the advantages and limitations of these delivery approaches, and discuss the remaining challenges.

4.
Adv Sci (Weinh) ; : e2400451, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828672

ABSTRACT

Wound infections pose a major healthcare issue, affecting the well-being of millions of patients worldwide. Effective intervention and on-site detection are important in wound management. However, current approaches are hindered by time-consuming analysis and a lack of technology for real-time monitoring and prompt therapy delivery. In this study, a smart wound patch system (SWPS) designed for wireless closed-loop and in-situ wound management is presented. The SWPS integrates a microfluidic structure, an organic electrochemical transistor (OECT) based sensor, an electrical stimulation module, and a miniaturized flexible printed circuit board (FPCB). The OECT incorporates a bacteria-responsive DNA hydrogel-coated gate for continuous monitoring of bacterial virulence at wound sites. Real-time detection of OECT readings and on-demand delivery of electrical cues to accelerate wound healing is facilitated by a mobile phone application linked with an FPCB containing low-power electronics equipped with parallel sensing and stimulation circuitry. In this proof-of-concept study, the functionality of the SWPS is validated and its application both in vitro and in vivo is demonstrated. This proposed system expands the arsenal of tools available for effective wound management and enables personalized treatment.

5.
MedComm (2020) ; 5(6): e587, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840773

ABSTRACT

Human enterovirus A71 (EV-A71) is a significant etiological agent responsible for epidemics of hand, foot, and mouth disease (HFMD) in Asia-Pacific regions. There are presently no licensed antivirals against EV-A71, and the druggable target for EV-A71 remains very limited. The phenotypic hit 10,10'-bis(trifluoromethyl) marinopyrrole A derivative, herein termed MPA-CF3, is a novel potent small-molecule inhibitor against EV-A71, but its pharmacological target(s) and antiviral mechanisms are not defined. Here, quantitative chemoproteomics deciphered the antiviral target of MAP-CF3 as host factor coatomer subunit zeta-1 (COPZ1). Mechanistically, MPA-CF3 disrupts the interaction of COPZ1 with the EV-A71 nonstructural protein 2C by destabilizing COPZ1 upon binding. The destruction of this interaction blocks the coatomer-mediated transport of 2C to endoplasmic reticulum, and ultimately inhibits EV-A71 replication. Taken together, our study disclosed that MPA-CF3 can be a structurally novel host-targeting anti-EV-A71 agent, providing a structural basis for developing the COPZ1-targeting broad-spectrum antivirals against enteroviruses. The mechanistic elucidation of MPA-CF3 against EV-A71 may offer an alternative COPZ1-involved therapeutic pathway for enterovirus infection.

6.
Small ; : e2401596, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889398

ABSTRACT

All inorganic lead halide perovskites exhibit fascinating optical and optoelectronic characteristics for on-chip lasing, but the lack of precise control of wafer-scale fabrication for perovskite microstructure arrays restricts their potential applications in on-chip-integrated devices. In this work, a microstructure-template assisted crystallization method is demonstrated via a designed chemical vapor deposition process, achieving the controllable fabrication of homogeneous perovskite micro-hemispheroid (PeMH) arrays spanning the entire surface area of a 4-inch wafer. Benefiting from the low-loss whispering gallery resonance and plasmon-enhanced light-matter interactions in well-confined hybrid cavities, this CsPbX3/Ag (X = Cl, Br) plasmonic microlasers exhibit quite low thresholds below 10 µJ cm-2. Interestingly, these thresholds can be efficiently modulated through the manipulation of plasmonic resonance and electromagnetic field mode in PeMHs owning various diameters. This strategy not only provides a valuable methodology for the large-scale fabrication of perovskite microstructures but also endorses the potential of all-inorganic perovskite nanostructures as promising candidates for on-chip-integrated light sources.

7.
Plant J ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923085

ABSTRACT

Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.

8.
Fundam Res ; 4(3): 550-556, 2024 May.
Article in English | MEDLINE | ID: mdl-38933186

ABSTRACT

The discovery of covalent H3S and clathrate structure LaH10 with excellent superconducting critical temperatures at high pressures has facilitated a multitude of research on compressed hydrides. However, their superconducting pressures are too high (generally above 150 GPa), thereby hindering their application. In addition, making room-temperature superconductivity close to ambient pressure in hydrogen-based superconductors is challenging. In this work, we calculated the chemically "pre-compressed" Be-H by heavy metals Th and Ce to stabilize the superconducting phase near ambient pressure. An unprecedented ThBeH8 (CeBeH8) with a "fluorite-type" structure was predicted to be thermodynamically stable above 69 GPa (76 GPa), yielding a T c of 113 K (28 K) decompressed to 7 GPa (13 GPa) by solving the anisotropic Migdal-Eliashberg equations. Be-H vibrations play a vital role in electron-phonon coupling and structural stability of these ternary hydrides. Our results will guide further experiments toward synthesizing ternary hydride superconductors at mild pressures.

9.
Environ Sci Technol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935480

ABSTRACT

NH3 emissions from industrial sources and possibly future energy production constitute a threat to human health because of their toxicity and participation in PM2.5 formation. Ammonia selective catalytic oxidation to N2 (NH3-SCO) is a promising route for NH3 emission control, but the mechanistic origin of achieving high N2 selectivity remains elusive. Here we constructed a highly N2-selective CuO/TiO2 catalyst and proposed a CuOx dimer active site based on the observation of a quadratic dependence of NH3-SCO reaction rate on CuOx loading, ac-STEM, and ab initio thermodynamic analysis. Combining this with the identification of a critical N2H4 intermediate by in situ DRIFTS characterization, a comprehensive N2H4-mediated reaction pathway was proposed by DFT calculations. The high N2 selectivity originated from the preference for NH2 coupling to generate N2H4 over NH2 dehydrogenation on the CuOx dimer active site. This work could pave the way for the rational design of efficient NH3-SCO catalysts.

10.
Bioorg Med Chem Lett ; 108: 129793, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38735343

ABSTRACT

Neuromuscular blocking agents (NMBAs) are widely used in anesthesia for intubation and surgical muscle relaxation. Novel atracurium and mivacurium derivatives were developed, with compounds 18c, 18d, and 29a showing mivacurium-like relaxation at 27.27 nmol/kg, and 15b, 15c, 15e, and 15h having a shorter duration at 272.7 nmol/kg. The structure-activity and configuration-activity relationships of these derivatives and 29a's binding to nicotinic acetylcholine receptors were analyzed through molecular docking. Rabbit trials showed 29a has a shorter duration compared to mivacurium. This suggests that linker properties, ammonium group substituents, and configuration are crucial for NMBA activity and duration, with compound 29a emerging as a potential ultra-short-acting NMBA.


Subject(s)
Drug Design , Isoquinolines , Neuromuscular Blocking Agents , Neuromuscular Blocking Agents/pharmacology , Neuromuscular Blocking Agents/chemical synthesis , Neuromuscular Blocking Agents/chemistry , Structure-Activity Relationship , Animals , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/chemical synthesis , Rabbits , Receptors, Nicotinic/metabolism , Molecular Docking Simulation , Molecular Structure , Dose-Response Relationship, Drug , Mivacurium , Atracurium/analogs & derivatives , Atracurium/pharmacology , Atracurium/chemical synthesis , Atracurium/chemistry
11.
Bioresour Technol ; 403: 130764, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718903

ABSTRACT

Abundant renewable resource lignocellulosic biomass possesses tremendous potential for green biomanufacturing, while its efficient utilization by Yarrowia lipolytica, an attractive biochemical production host, is restricted since the presence of inhibitors furfural and acetic acid in lignocellulosic hydrolysate. Given deficient understanding of inherent interactions between inhibitors and cellular metabolism, sufficiently mining relevant genes is necessary. Herein, 14 novel gene targets were discovered using clustered regularly interspaced short palindromic repeats interference library in Y. lipolytica, achieving tolerance to 0.35 % (v/v) acetic acid (the highest concentration reported in Y. lipolytica), 4.8 mM furfural, or a combination of 2.4 mM furfural and 0.15 % (v/v) acetic acid. The tolerance mechanism might involve improvement of cell division and decrease of reactive oxygen species level. Transcriptional repression of effective gene targets still enabled tolerance when xylose was a carbon source. This work forms a robust foundation for improving microbial tolerance to lignocellulose-derived inhibitors and revealing underlying mechanism.


Subject(s)
Acetic Acid , Furaldehyde , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Furaldehyde/pharmacology , Acetic Acid/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats , Lignin/metabolism , Genome, Fungal , Gene Library
12.
Food Chem ; 452: 139533, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38705119

ABSTRACT

Encapsulating enzymes in metal-organic frameworks is a common practice to improve enzyme stability against harsh conditions. However, the synthesis of enzyme@MOFs has been primarily limited to small-scale laboratory settings, hampering their industrial applications. Spray drying is a scalable and cost-effective technology, which has been frequently used in industry for large-scale productions. Despite these advantages, its potential for encapsulating enzymes in MOFs remains largely unexplored, due to challenges such as nozzle clogging from MOF particle formation, utilization of toxic organic solvents, controlled release of encapsulated enzymes, and high temperatures that could compromise enzyme activity. Herein, we present a novel approach for preparing phytase@MIL-88 A using solvent-free spray drying. This involves atomizing two MOF precursor solutions separately using a three-fluid nozzle, with enzyme release controlled by manipulating defects within the MOFs. The physicochemical properties of the spray dried particles are characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Leveraging the efficiency and scalability of spray drying in industrial production, this scalable encapsulation technique holds considerable promise for broad industrial applications.


Subject(s)
6-Phytase , Delayed-Action Preparations , Enzyme Stability , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , 6-Phytase/chemistry , 6-Phytase/metabolism , Delayed-Action Preparations/chemistry , Spray Drying , Enzymes, Immobilized/chemistry , Desiccation , Particle Size , Drug Compounding/methods , Drug Compounding/instrumentation
13.
Animal Model Exp Med ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720455

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a common joint disease, and existing drugs cannot cure OA, so there is an urgent need to identify new targets. Mitophagy plays an important role in OA; however, the role of mitophagy in the OA immune system is not yet clear. METHODS: In this study, differential analysis and enrichment analysis were used to identify mitophagy-related genes (MRGs) with differential expression in OA and the functional pathways involved in OA. Subsequently, two machine learning methods, RF and LASSO, were used to screen MRGs with diagnostic value and construct nomograms. At the same time, the relationship between mitophagy and OA immune response was explored by immunoinfiltration analysis. RESULTS: Forty-three differentially MRGs were identified in OA, of which six MRGs (GABARAPL2, PARL, GABARAPL1, JUN, RRAS, and SNX7) were associated with the diagnosis of OA. The ROC analysis results show that these 6 MRGs have high predictive accuracy in the diagnosis of OA. In immune infiltration analysis, we found that the abundance of significantly different immune cells in OA was mostly upregulated. In addition, the expression of diagnostic-related MRGs is correlated with changes in the abundance of immune cells in OA. CONCLUSION: This study demonstrates that six MRGs can be used as diagnostic biomarkers. The expression of diagnostic-related MRGs is correlated with changes in the abundance of immune cells in OA. At the same time, mitophagy may affect the immune microenvironment of OA by regulating immune cells, ultimately leading to the progression of OA.

14.
Radiat Oncol ; 19(1): 64, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807176

ABSTRACT

PURPOSE: This study aims to investigate the effects of chest wall bolus in intensity-modulated radiotherapy (IMRT) technology on clinical outcomes for post-mastectomy breast cancer patients. MATERIALS AND METHODS: This retrospective study included patients with invasive carcinoma ((y)pT0-4, (y)pN0-3) who received photon IMRT after mastectomy at the Affiliated Hospital of Qingdao University from 2014 to 2019. The patients were divided into two groups based on whether they received daily bolus application or not, and the baseline characteristics were matched using propensity score matching (PSM). Cumulative incidence (CI) of local recurrence (LR), locoregional recurrence (LRR), overall survival (OS) and disease-free survival (DFS) were evaluated with a log-rank test. Acute skin toxicity and late radiation pneumonia was analyzed using chi-square test. RESULTS: A total of 529 patients were included in this study, among whom 254 (48%) patients received bolus application. The median follow-up time was 60 months. After matching, 175 well-paired patients were selected. The adjusted 5-year outcomes (95% confidence interval) in patients treated with and without bolus were, respectively: CI of LR 2.42% (0.04-4.74) versus 2.38% (0.05-4.65), CI of LRR 2.42% (0.04-4.74) versus 3.59% (0.73-6.37), DFS 88.12% (83.35-93.18) versus 84.69% (79.42-90.30), OS 94.21% (90.79-97.76) versus 95.86% (92.91-98.91). No correlation between bolus application and skin toxicity (P = 0.555) and late pneumonia (P = 0.333) was observed. CONCLUSIONS: The study revealed a low recurrence rate using IMRT technology. The daily used 5 mm chest wall bolus was not associated with improved clinical outcomes.


Subject(s)
Breast Neoplasms , Mastectomy , Radiotherapy, Intensity-Modulated , Humans , Female , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Retrospective Studies , Middle Aged , China/epidemiology , Adult , Neoplasm Recurrence, Local/pathology , Aged
15.
Sci Total Environ ; 931: 172885, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697546

ABSTRACT

Nanobubble (NB) technology has gained popularity in the environmental field owing to its distinctive characteristics and ecological safety. More recently, the application of NB technology in anaerobic digestion (AD) systems has been proven to promote substrate degradation and boost the production of biogas (H2 and/or CH4). This review presents the recent advancements in the application of NB technology in AD systems. Meanwhile, it also sheds light on the underlying mechanisms of NB technology that contribute to the enhanced biogas production from AD of organic solid wastes. Specifically, the working principles of the NB generator are first summarized, and then the structure of the NB generator is optimized to accommodate the demand for NB characteristics in the AD system. Subsequently, it delves into a detailed discussion of how the addition of nanobubble water (NBW) affects AD performance and the different factors that NB can potentially contribute. As a simple and environmentally friendly additive, NBW was commonly used in the AD process to enhance the fluidity and mass transfer characteristics of digestate. Additionally, NB has the potential to enhance the functionality of different types of microbial enzymes that play crucial roles in the AD process. This includes boosting extracellular hydrolase activities, optimizing coenzyme F420, and improving cellulase function. Finally, it is proposed that NBW has development potential for the pretreatment of substrate and inoculum, with future development being directed towards this aim.


Subject(s)
Biofuels , Refuse Disposal , Anaerobiosis , Refuse Disposal/methods , Solid Waste , Bioreactors
16.
Sci Rep ; 14(1): 10729, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730055

ABSTRACT

Due to the BCS theory, hydrogen, the lightest element, would be the prospect of room-temperature superconductor after metallization, but because of the difficulty of the hydrogen metallization, the theory about hydrogen pre-compression was proposed that the hydrogen-rich compounds could be a great option for the high Tc superconductors. The superior properties of TmH6, YbH6 and LuH6 indicated the magnificent potential of heavy rare earth elements for low-pressure stability. Here, we designed XTmH12 (X = Y, Yb, Lu, and La) to obtain higher Tc while maintaining low pressure stability. Most prominently, YbTmH12 can stabilize at a pressure of 60 GPa. Compared with binary TmH6 hydride, its Tc was increased to 48 K. The results provide an effective method for the rational design of moderate pressure stabilized hydride superconductors.

17.
J Agric Food Chem ; 72(20): 11321-11330, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38714361

ABSTRACT

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial target enzyme in albino herbicides. The inhibition of HPPD activity interferes with the synthesis of carotenoids, blocking photosynthesis and resulting in bleaching and necrosis. To develop herbicides with excellent activity, a series of 3-hydroxy-2-(6-substituted phenoxynicotinoyl)-2-cyclohexen-1-one derivatives were designed via active substructure combination. The title compounds were characterized via infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The structure of compound III-17 was confirmed via single-crystal X-ray diffraction. Preliminary tests demonstrated that some compounds had good herbicidal activity. Crop safety tests revealed that compound III-29 was safer than the commercial herbicide mesotrione in wheat and peanuts. Moreover, the compound exhibited the highest inhibitory activity against Arabidopsis thaliana HPPD (AtHPPD), with a half-maximal inhibitory concentration of 0.19 µM, demonstrating superior activity compared with mesotrione (0.28 µM) in vitro. A three-dimensional quantitative structure-activity relationship study revealed that the introduction of smaller groups to the 5-position of cyclohexanedione and negative charges to the 3-position of the benzene ring enhanced the herbicidal activity. A molecular structure comparison demonstrated that compound III-29 was beneficial to plant absorption and conduction. Molecular docking and molecular dynamics simulations further verified the stability of the complex formed by compound III-29 and AtHPPD. Thus, this study may provide insights into the development of green and efficient herbicides.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Arabidopsis , Drug Design , Enzyme Inhibitors , Herbicides , Molecular Docking Simulation , Herbicides/chemistry , Herbicides/pharmacology , Herbicides/chemical synthesis , 4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Arabidopsis/drug effects , Arabidopsis/growth & development , Structure-Activity Relationship , Molecular Structure , Ketones/chemistry , Ketones/pharmacology , Ketones/chemical synthesis , Cyclohexanones/chemistry , Cyclohexanones/pharmacology , Cyclohexanones/chemical synthesis , Triticum/chemistry , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism
18.
Ecotoxicol Environ Saf ; 278: 116432, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728947

ABSTRACT

Cadmium (Cd) pollution is a serious global environmental problem, which requires a global concern and practical solutions. Microbial remediation has received widespread attention owing to advantages, such as environmental friendliness and soil amelioration. However, Cd toxicity also severely deteriorates the remediation performance of functional microorganisms. Analyzing the mechanism of bacterial resistance to Cd stress will be beneficial for the application of Cd remediation. In this study, the bacteria strain, up to 1400 mg/L Cd resistance, was employed and identified as Proteus mirabilis Ch8 (Ch8) through whole genome sequence analyses. The results indicated that the multiple pathways of immobilizing and detoxifying Cd maintained the growth of Ch8 under Cd stress, which also possessed high Cd extracellular adsorption. Firstly, the changes in surface morphology and functional groups of Ch8 cells were observed under different Cd conditions through SEM-EDS and FTIR analyses. Under 100 mg/L Cd, Ch8 cells exhibited aggregation and less flagella; the Cd biosorption of Ch8 was predominately by secreting exopolysaccharides (EPS) and no significant change of functional groups. Under 500 mg/L Cd, Ch8 were present irregular polymers on the cell surface, some cells with wrapping around; the Cd biosorption capacity exhibited outstanding effects (38.80 mg/g), which was mainly immobilizing Cd by secreting and interacting with EPS. Then, Ch8 also significantly enhanced the antioxidant enzyme activity and the antioxidant substance content under different Cd conditions. The activities of SOD and CAT, GSH content of Ch8 under 500 mg/L Cd were significantly increased by 245.47%, 179.52%, and 241.81%, compared to normal condition. Additionally, Ch8 significantly induced the expression of Acr A and Tol C (the resistance-nodulation-division (RND) efflux pump), and some antioxidant genes (SodB, SodC, and Tpx) to reduce Cd damage. In particular, the markedly higher expression levels of SodB under Cd stress. The mechanism of Ch8 lays a foundation for its application in solving soil remediation.


Subject(s)
Cadmium , Proteus mirabilis , Soil Pollutants , Cadmium/toxicity , Soil Pollutants/toxicity , Biodegradation, Environmental
19.
J Colloid Interface Sci ; 670: 348-356, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38763030

ABSTRACT

The depressed directional separation of photogenerated carriers and weak CO2 adsorption/activation activity are the main factors hampering the development of artificial photosynthesis. Herein, Na ions are embedded in graphitic carbon nitride (g-C3N4) to achieve directional migration of the photogenerated electrons to Na sites, while the electron-rich Na sites enhance CO2 adsorption and activation. Na/g-C3N4 (NaCN) shows improved photocatalytic reduction activity of CO2 to CO and CH4, and under simulated sunlight irradiation, the CO yield of NaCN synthesized by embedding Na at 550°C (NaCN-550) is 371.2 µmol g-1 h-1, which is 58.9 times more than that of the monomer g-C3N4. By means of theoretical calculations and experiments including in situ fourier transform infrared spectroscopy, the mechanism is investigated. This strategy which improves carrier separation and reduces the energy barrier at the same time is important to the development of artificial photosynthesis.

20.
J Cell Mol Med ; 28(9): e18351, 2024 May.
Article in English | MEDLINE | ID: mdl-38693854

ABSTRACT

Coronary artery bypass grafting (CABG) is an effective treatment for coronary heart disease, with vascular transplantation as the key procedure. Intimal hyperplasia (IH) gradually leads to vascular stenosis, seriously affecting the curative effect of CABG. Mesenchymal stem cells (MSCs) were used to alleviate IH, but the effect was not satisfactory. This work aimed to investigate whether lncRNA MIR155HG could improve the efficacy of MSCs in the treatment of IH and to elucidate the role of the competing endogenous RNA (ceRNA). The effect of MIR155HG on MSCs function was investigated, while the proteins involved were assessed. IH was detected by HE and Van Gieson staining. miRNAs as the target of lncRNA were selected by bioinformatics analysis. qRT-PCR and dual-luciferase reporter assay were performed to verify the binding sites of lncRNA-miRNA. The apoptosis, Elisa and tube formation assay revealed the effect of ceRNA on the endothelial protection of MIR155HG-MSCs. We observed that MIR155HG improved the effect of MSCs on IH by promoting viability and migration. MIR155HG worked as a sponge for miR-205. MIR155HG/miR-205 significantly improved the function of MSCs, avoiding apoptosis and inducing angiogenesis. The improved therapeutic effects of MSCs on IH might be due to the ceRNA role of MIR155HG/miR-205.


Subject(s)
Apoptosis , Hyperplasia , Mesenchymal Stem Cells , MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Humans , RNA, Long Noncoding/genetics , Apoptosis/genetics , Cell Movement/genetics , Animals , Mesenchymal Stem Cell Transplantation/methods , Tunica Intima/pathology , Tunica Intima/metabolism , Gene Expression Regulation , Cell Proliferation/genetics , Male , Cell Survival/genetics , RNA, Competitive Endogenous
SELECTION OF CITATIONS
SEARCH DETAIL
...