Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1413507, 2024.
Article in English | MEDLINE | ID: mdl-39139723

ABSTRACT

Corn-soybean rotation is a cropping pattern to optimize crop structure and improve resource use efficiency, and nitrogen (N) fertilizer application is an indispensable tool to increase corn yields. However, the effects of N fertilizer application levels on corn yield and soil N storage under corn-soybean rotation have not been systematically studied. The experimental located in the central part of the Songnen Plain, a split-zone experimental design was used with two planting patterns of continuous corn (CC) and corn-soybean rotations (RC) in the main zone and three N application rates of 0, 180, and 360 kg hm-2 of urea in the secondary zone. The research has shown that RC treatments can enhance plant growth and increase corn yield by 4.76% to 79.92% compared to CC treatments. The amount of N fertilizer applied has a negative correlation with yield increase range, and N application above 180 kg hm-2 has a significantly lower effect on corn yield increase. Therefore, a reduction in N fertilizer application may be appropriate. RC increased soil N storage by improving soil N-transforming enzyme activity, improving soil N content and the proportion of soil organic N fractions. Additionally, it can improve plant N use efficiency by 1.4%-5.6%. Soybeans grown in corn-soybean rotations systems have the potential to replace more than 180 kg hm-2 of urea application. Corn-soybean rotation with low N inputs is an efficient and sustainable agricultural strategy.

3.
Biomacromolecules ; 24(6): 2804-2815, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37223955

ABSTRACT

SPLUNC1 (short palate lung and nasal epithelial clone 1) is a multifunctional host defense protein found in human respiratory tract with antimicrobial properties. In this work, we compare the biological activities of four SPLUNC1 antimicrobial peptide (AMP) derivatives using paired clinical isolates of the Gram-negative (G(-)) bacteria Klebsiella pneumoniae, obtained from 11 patients with/without colistin resistance. Secondary structural studies were carried out to study interactions between the AMPs and lipid model membranes (LMMs) utilizing circular dichroism (CD). Two peptides were further characterized using X-ray diffuse scattering (XDS) and neutron reflectivity (NR). A4-153 displayed superior antibacterial activity in both G(-) planktonic cultures and biofilms. NR and XDS revealed that A4-153 (highest activity) is located primarily in membrane headgroups, while A4-198 (lowest activity) is located in hydrophobic interior. CD revealed that A4-153 is helical, while A4-198 has little helical character, demonstrating that helicity and efficacy are correlated in these SPLUNC1 AMPs.


Subject(s)
Bacteria , Lung , Humans , Biofilms , Gram-Negative Bacteria , Lipids , Microbial Sensitivity Tests , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL