Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Brain Dis ; 39(4): 625-633, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38416338

ABSTRACT

Selenium-containing agents showed novel anticancer activity by triggering pro-oxidative mechanism. Studies confirmed that methylseleninic acid (MeSe) displayed broad-spectrum anti-tumor activity against kinds of human cancers. However, the anticancer effects and mechanism of MeSe against human glioma growth have not been explored yet. Herein, the present study showed that MeSeA dose-dependently inhibited U251 and U87 human glioma cells growth in vitro. Flow cytometry analysis indicated that MeSe induced significant U251 cells apoptosis with a dose-dependent manner, followed by the activation of caspase-7, caspase-9 and caspase-3. Immunofluorescence staining revealed that MeSe time-dependently caused reactive oxide species (ROS) accumulation and subsequently resulted in oxidative damage, as convinced by the increased phosphorylation level of Ser428-ATR, Ser1981-ATM, Ser15-p53 and Ser139-histone. ROS inhibition by glutathione (GSH) effectively attenuated MeSe-induced ROS generation, oxidative damage, caspase-3 activation and cytotoxicity, indicating that ROS was an upstream factor involved in MeSe-mediated anticancer mechanism in glioma. Importantly, MeSe administration in nude mice significantly inhibited glioma growth in vivo by inducing apoptosis through triggering oxidative damage. Taken together, our findings validated the possibility that MeSe as a selenium-containing can act as potential tumor chemotherapy agent for therapy of human glioma.


Subject(s)
Apoptosis , Glioma , Mice, Nude , Organoselenium Compounds , Oxidative Stress , Reactive Oxygen Species , Humans , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Apoptosis/drug effects , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Animals , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Oxidative Stress/drug effects , Mice , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Mice, Inbred BALB C
2.
Metab Brain Dis ; 39(2): 263-282, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38019374

ABSTRACT

Most scholars believe that amyloid-beta (Aß) has the potential to induce apoptosis, stimulate an inflammatory cascade, promote oxidative stress and exacerbate the pathological progression of Alzheimer's disease (AD). Therefore, it is crucial to investigate the deposition of Aß in AD. At approximately 6 months of age, APP/PS1 double transgenic mice gradually exhibit the development of plaques, as well as spatial and learning impairment. Notably, the hippocampus is specifically affected in the course of AD. Herein, 6-month-old APP/PS1 double transgenic mice were utilized, and the differentially expressed (DE) proteins in the hippocampus were identified and analyzed using 4D label-free quantitative proteomics technology and parallel reaction monitoring (PRM). Compared to wild-type mice, 29 proteins were upregulated and 25 proteins were downregulated in the AD group. Gene Ontology (GO) enrichment analysis of biological processes (BP) indicated that the DE proteins were mainly involved in 'ribosomal large subunit biogenesis'. Molecular function (MF) analysis results were primarily associated with '5.8S rRNA binding' and 'structural constituent of ribosome'. In terms of cellular components (CC), the DE proteins were mainly found in 'polysomal ribosome', 'cytosolic large ribosomal subunit', 'cytosolic ribosome', and 'large ribosomal subunit', among others. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the results were mainly enriched in the 'Ribosome signaling pathway'. The key target proteins identified were ribosomal protein (Rp)l18, Rpl17, Rpl19, Rpl24, Rpl35, and Rpl6. The PRM verification results were consistent with the findings of the 4D label-free quantitative proteomics analysis. Overall, these findings suggest that Rpl18, Rpl17, Rpl19, Rpl24, Rpl35, and Rpl6 may have potential therapeutic value for the treatment of AD by targeting Aß.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Proteomics , Mice, Transgenic , Ribosomal Proteins/genetics , Ribosomes , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...