Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
JAC Antimicrob Resist ; 6(1): dlad137, 2024 Feb.
Article En | MEDLINE | ID: mdl-38161967

Objective: Dual carbapenemase-producing organisms (DCPOs) are an emerging threat that expands the spectrum of antimicrobial resistance. There is limited literature on the clinical and genetic epidemiology of DCPOs. Methods: DCPO isolates were identified by Xpert® Carba-R PCR testing of routine diagnostic cultures performed from 2018 to 2021 at a New York City health system. WGS was performed by Illumina and/or PacBio. Medical records of patients were reviewed for clinical and epidemiological data. Results: Twenty-six DCPO isolates were obtained from 13 patients. Klebsiella pneumoniae (n = 22) was most frequent, followed by Pseudomonas aeruginosa (n = 2), Escherichia coli (n = 1) and Enterobacter cloacae (n = 1). The most common DCPO combination was blaNDM/blaOXA-48-like (n = 16). Notably, 1.05% (24/2290) of carbapenem-resistant Enterobacterales isolates were identified as DCPOs. The susceptibility profiles matched the identified resistance genes, except for a K. pneumoniae (blaKPC/blaOXA-48-like) isolate that was phenotypically susceptible to meropenem. Eleven patients were hospitalized within the year prior to admission, and received antibiotic(s) 1 month prior. Seven patients were originally from outside the USA. Hypertension, kidney disease and diabetes were frequent comorbidities. Death in two cases was attributed to DCPO infection. WGS of eight isolates showed that carbapenemases were located on distinct plasmids, except for one K. pneumoniae isolate where NDM and KPC carbapenemases were located on a single IncC-type plasmid backbone. Conclusions: Here we characterized a series of DCPOs from New York City. Foreign travel, prior hospitalization, antibiotic usage and comorbidities were common among DCPO cases. All carbapenemases were encoded on plasmids, which may facilitate horizontal transfer.

2.
Cell Host Microbe ; 31(10): 1668-1684.e12, 2023 10 11.
Article En | MEDLINE | ID: mdl-37738983

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2.


COVID-19 , SARS-CoV-2 , Viral Proteins , Humans , COVID-19/virology , Immunity, Innate , Interferons/genetics , Interferons/metabolism , SARS-CoV-2/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
3.
J Med Virol ; 95(8): e29009, 2023 08.
Article En | MEDLINE | ID: mdl-37563850

Despite intensive studies during the last 3 years, the pathology and underlying molecular mechanism of coronavirus disease 2019 (COVID-19) remain poorly defined. In this study, we investigated the spatial single-cell molecular and cellular features of postmortem COVID-19 lung tissues using in situ sequencing (ISS). We detected 10 414 863 transcripts of 221 genes in whole-slide tissues and segmented them into 1 719 459 cells that were mapped to 18 major parenchymal and immune cell types, all of which were infected by SARS-CoV-2. Compared with the non-COVID-19 control, COVID-19 lungs exhibited reduced alveolar cells (ACs) and increased innate and adaptive immune cells. We also identified 19 differentially expressed genes in both infected and uninfected cells across the tissues, which reflected the altered cellular compositions. Spatial analysis of local infection rates revealed regions with high infection rates that were correlated with high cell densities (HIHD). The HIHD regions expressed high levels of SARS-CoV-2 entry-related factors including ACE2, FURIN, TMPRSS2 and NRP1, and co-localized with organizing pneumonia (OP) and lymphocytic and immune infiltration, which exhibited increased ACs and fibroblasts but decreased vascular endothelial cells and epithelial cells, mirroring the tissue damage and wound healing processes. Sparse nonnegative matrix factorization (SNMF) analysis of niche features identified seven signatures that captured structure and immune niches in COVID-19 tissues. Trajectory inference based on immune niche signatures defined two pathological routes. Trajectory A primarily progressed with increased NK cells and granulocytes, likely reflecting the complication of microbial infections. Trajectory B was marked by increased HIHD and OP, possibly accounting for the increased immune infiltration. The OP regions were marked by high numbers of fibroblasts expressing extremely high levels of COL1A1 and COL1A2. Examination of single-cell RNA-seq data (scRNA-seq) from COVID-19 lung tissues and idiopathic pulmonary fibrosis (IPF) identified similar cell populations consisting mainly of myofibroblasts. Immunofluorescence staining revealed the activation of IL6-STAT3 and TGF-ß-SMAD2/3 pathways in these cells, likely mediating the upregulation of COL1A1 and COL1A2 and excessive fibrosis in the lung tissues. Together, this study provides a spatial single-cell atlas of cellular and molecular signatures of fatal COVID-19 lungs, which reveals the complex spatial cellular heterogeneity, organization, and interactions that characterized the COVID-19 lung pathology.


COVID-19 , Humans , COVID-19/pathology , SARS-CoV-2/genetics , Endothelial Cells , Single-Cell Gene Expression Analysis , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Lung/pathology
4.
J Med Virol ; 95(6): e28878, 2023 06.
Article En | MEDLINE | ID: mdl-37322614

Monkeypox (MPOX) is a zoonotic disease that affects humans and other primates, resulting in a smallpox-like illness. It is caused by monkeypox virus (MPXV), which belongs to the Poxviridae family. Clinically manifested by a range of cutaneous and systemic findings, as well as variable disease severity phenotypes based on the genetic makeup of the virus, the cutaneous niche and respiratory mucosa are the epicenters of MPXV pathogenicity. Herein, we describe the ultrastructural features of MPXV infection in both human cultured cells and cutaneous clinical specimens collected during the 2022-2023 MPOX outbreak in New York City that were revealed through electron microscopy. We observed typical enveloped virions with brick-shaped morphologies that contained surface protrusions, consistent with the classic ultrastructural features of MPXV. In addition, we describe morpho-functional evidence that point to roles of distinct cellular organelles in viral assembly during clinical MPXV infection. Interestingly, in skin lesions, we found abundant melanosomes near viral assembly sites, particularly in the vicinity of mature virions, which provides further insight into virus-host interactions at the subcellular level that contribute to MPXV pathogenesis. These findings not only highlight the importance of electron microscopic studies for further investigation of this emerging pathogen but also in characterizing MPXV pathogenesis during human infection.


Mpox (monkeypox) , Skin Diseases , Animals , Humans , Monkeypox virus/genetics , Virulence , Primates , Genomics
5.
J Med Virol ; 95(5): e28788, 2023 05.
Article En | MEDLINE | ID: mdl-37212288

Diagnosis by rapid antigen tests (RATs) is useful for early initiation of antiviral treatment. Because RATs are easy to use, they can be adapted for self-testing. Several kinds of RATs approved for such use by the Japanese regulatory authority are available from drug stores and websites. Most RATs for COVID-19 are based on antibody detection of the SARS-CoV-2 N protein. Since Omicron and its subvariants have accumulated several amino acid substitutions in the N protein, such amino acid changes might affect the sensitivity of RATs. Here, we investigated the sensitivity of seven RATs available in Japan, six of which are approved for public use and one of which is approved for clinical use, for the detection of BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1, as well as the delta variant (B.1.627.2). All tested RATs detected the delta variant with a detection level between 7500 and 75 000 pfu per test, and all tested RATs showed similar sensitivity to the Omicron variant and its subvariants (BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1). Human saliva did not reduce the sensitivity of the RATs tested. Espline SARS-CoV-2 N showed the highest sensitivity followed by Inspecter KOWA SARS-CoV-2 and V Trust SARS-CoV-2 Ag. Since the RATs failed to detect low levels of infectious virus, individuals whose specimens contained less infectious virus than the detection limit would be considered negative. Therefore, it is important to note that RATs may miss individuals shedding low levels of infectious virus.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Amino Acid Substitution , Antiviral Agents
6.
J Med Virol ; 95(2): e28566, 2023 02.
Article En | MEDLINE | ID: mdl-36756942

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests diverse clinical pathologies involving multiple organs. While the respiratory tract is the primary SARS-CoV-2 target, acute kidney injury is common in COVID-19 patients, displaying as acute tubular necrosis (ATN) resulting from focal epithelial necrosis and eosinophilia, glomerulosclerosis, and autolysis of renal tubular cells. However, whether any renal cells are infected by SARS-CoV-2 and the mechanism involved in the COVID-19 kidney pathology remain unclear. METHODS: Kidney tissues obtained at autopsy from four severe COVID-19 patients and one healthy subject were examined by hematoxylin and eosin staining. Indirect immunofluorescent antibody assay was performed to detect SARS-CoV-2 spike protein S1 and nonstructural protein 8 (NSP8) together with markers of different kidney cell types and immune cells to identify the infected cells. RESULTS: Renal parenchyma showed tissue injury comprised of ATN and glomerulosclerosis. Positive staining of S1 protein was observed in renal parenchymal and tubular epithelial cells. Evidence of viral infection was also observed in innate monocytes/macrophages and NK cells. Positive staining of NSP8, which is essential for viral RNA synthesis and replication, was confirmed in renal parenchymal cells, indicating the presence of active viral replication in the kidney. CONCLUSIONS: In fatal COVID-19 kidneys, there are SARS-CoV-2 infection, minimally infiltrated innate immune cells, and evidence of viral replication, which could contribute to tissue damage in the form of ATN and glomerulosclerosis.


Acute Kidney Injury , COVID-19 , Humans , COVID-19/pathology , SARS-CoV-2 , Kidney/pathology , Acute Kidney Injury/pathology , Necrosis/pathology
7.
J Med Virol ; 95(1): e28246, 2023 01.
Article En | MEDLINE | ID: mdl-36271490

SARS-CoV-2 NSP12, the viral RNA-dependent RNA polymerase (RdRp), is required for viral replication and is a therapeutic target to treat COVID-19. To facilitate research on SARS-CoV-2 NSP12 protein, we developed a rat monoclonal antibody (CM12.1) against the NSP12 N-terminus that can facilitate functional studies. Immunoblotting and immunofluorescence assay (IFA) confirmed the specific detection of NSP12 protein by this antibody for cells overexpressing the protein. Although NSP12 is generated from the ORF1ab polyprotein, IFA of human autopsy COVID-19 lung samples revealed NSP12 expression in only a small fraction of lung cells including goblet, club-like, vascular endothelial cells, and a range of immune cells, despite wide-spread tissue expression of spike protein antigen. Similar studies using in vitro infection also generated scant protein detection in cells with established virus replication. These results suggest that NSP12 may have diminished steady-state expression or extensive posttranslation modifications that limit antibody reactivity during SARS-CoV-2 replication.


COVID-19 , SARS-CoV-2 , Humans , Animals , Rats , SARS-CoV-2/metabolism , Antibodies, Monoclonal , Endothelial Cells , RNA-Dependent RNA Polymerase/genetics , Antiviral Agents/metabolism
8.
J Med Virol ; 95(1): e28247, 2023 01.
Article En | MEDLINE | ID: mdl-36271493

Monkeypox virus (MPXV) is a zoonotic orthopoxvirus within the Poxviridae family. MPXV is endemic to Central and West Africa. However, the world is currently witnessing an international outbreak with no clear epidemiological links to travel or animal exposure and with ever-increasing numbers of reported cases worldwide. Here, we evaluated and validated a new, sensitive, and specific real-time PCR-assay for MPXV diagnosis in humans and compare the performance of this novel assay against a Food & Drug Administration-cleared pan-Orthopox RT-PCR assay. We determined specificity, sensitivity, and analytic performance of the PKamp™ Monkeypox Virus RT-PCR assay targeting the viral F3L-gene. In addition, we further evaluated MPXV-PCR-positive specimens by viral culture, electron microscopy, and viral inactivation assays. The limit of detection was established at 7.2 genome copies/reaction, and MPXV was successfully identified in 20 clinical specimens with 100% correlation against the reference method with 100% sensitivity and specificity. Our results demonstrated the validity of this rapid, robust, and reliable RT-PCR assay for specific and accurate diagnosis of MPXV infection in human specimens collected both as dry swabs and in viral transport media. This assay has been approved by NYS Department of Health for clinical use.


Monkeypox virus , Mpox (monkeypox) , Animals , Humans , Monkeypox virus/genetics , Mpox (monkeypox)/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction
9.
bioRxiv ; 2022 Nov 30.
Article En | MEDLINE | ID: mdl-36299428

We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro , and in the Syrian golden hamster model in vivo . In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARY: SARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.

10.
Parasite Epidemiol Control ; 19: e00273, 2022 Nov.
Article En | MEDLINE | ID: mdl-36118050

Chagas Disease (CD), a chronic infection caused by the Trypanosoma cruzi parasite, is a Neglected Tropical Disease endemic to Latin America. With a re-emergence in Venezuela during the past two decades, the spread of CD has proved susceptible to, and inhibitable by a digital, real-time surveillance system effectuated by Citizen Scientists in communities throughout the country. The #TraeTuChipo (#BringYourKissingBug) campaign implemented in January 2020, has served as such a strategy counting on community engagement to define the current ecological distribution of CD vectors despite the absence of a functional national surveillance program. This pilot campaign collected data through online surveys, social media platforms, and/or telephone text messages. A total of 79 triatomine bugs were reported from eighteen Venezuelan states; 67 bugs were identified as Panstrongylus geniculatus, 1 as Rhodnius pictipes, 1 as Triatoma dimidiata, and 10 as Triatoma maculata. We analyzed 8 triatomine feces samples spotted from 4 Panstrongylus geniculatus which were confirmed positive by qPCR for T. cruzi . Further molecular characterization of discrete typing units (DTUs), revealed that all samples contained TcI, the most highly diverse and broadly distributed strain of T. cruzi. Moreover, analysis of the mitochondrial 12S gene revealed Myotis keaysi, Homo sapiens, and Gallus gallus as the main triatomine feeding sources. This study highlights a novel Citizen Science approach which may help improve the surveillance systems for CD in endemic countries.

11.
J Neurosurg Case Lessons ; 3(5)2022 Jan 31.
Article En | MEDLINE | ID: mdl-36130566

BACKGROUND: Cladophialophora bantiana is a dematiaceous, saprophytic fungus and a rare but reported cause of intracranial abscesses due to its strong neurotropism. Although it predominantly affects immunocompetent individuals with environmental exposure, more recently, its significance as a highly lethal opportunistic infection in transplant recipients has been recognized. Successful treatment requires timely but often challenging diagnosis, followed by complete surgical excision. Next-generation sequencing of microbial cell-free DNA (cfDNA) from plasma is a novel diagnostic method with the potential to identify invasive fungal infections more rapidly and less invasively than conventional microbiological testing, including brain biopsy. OBSERVATIONS: The authors described the case of a recipient of a liver transplant who presented with seizures and was found to have innumerable ring-enhancing intracranial lesions. The Karius Test, a commercially available method of next-generation sequencing of cfDNA, was used to determine the causative organism. Samples from the patient's plasma identified C. bantiana 6 days before culture results of the surgical specimen, allowing optimization of the empirical antifungal regimen, which led to a reduction in the size of the abscesses. LESSONS: The authors' findings suggest that microbial cfDNA sequencing may be particularly impactful in improving the management of brain abscesses in which the differential diagnosis is wide because of immunosuppression.

13.
Vet Dermatol ; 33(5): 450-453, 2022 Oct.
Article En | MEDLINE | ID: mdl-35644532

We report the novel use of cryosurgery to treat cutaneous feline leishmaniosis (FeL) in a domestic cat from mid-western Venezuela. Amastigotes, evident by microscopy in aspirates from the nodular, erythematous nose lesions, were identified as Leishmania mexicana by cytochrome b gene sequence analysis. Lesions resolved completely without relapse after 14 months.


Nous décrivons une nouvelle utilisation de la cryochirurgie pour traiter la leishmaniose féline cutanée (FeL) chez un chat domestique du centre-ouest du Venezuela. Les amastigotes, observés par microscopie dans les cytoponctions des lésions nodulaires et érythémateuses du nez, ont été identifiés comme Leishmania mexicana par analyse de la séquence du gène du cytochrome b. Les lésions ont complètement disparu sans rechute après 14 mois.


Describimos el uso novedoso de la criocirugía para tratar la leishmaniosis cutánea felina (FeL) en un gato doméstico del medio oeste de Venezuela. Los amastigotes, evidentes por microscopía en los aspirados de las lesiones nasales nodulares eritematosas, se identificaron como Leishmania mexicana mediante el análisis de la secuencia del gen del citocromo b. Las lesiones se resolvieron completamente sin recidiva tras 14 meses.


Neste estudo, relatamos a utilização inédita de criocirurgia para tratar leishmaniose felina cutânea (FeL) em um gato doméstico no centro-oeste da Venezuela. Amastigotas, evidentes à microscopia de aspirados da lesão nodular e eritematosa na região nasal, foram identificadas como Leishmania Mexicana por sequenciamento do gene do citocromo b. As lesões se resolveram completamente sem recidiva após 14 meses.


Cat Diseases , Leishmania mexicana , Leishmaniasis, Cutaneous , Animals , Cat Diseases/surgery , Cats , Cryotherapy/veterinary , Leishmaniasis, Cutaneous/therapy , Leishmaniasis, Cutaneous/veterinary
14.
Microbiol Spectr ; 10(2): e0148521, 2022 04 27.
Article En | MEDLINE | ID: mdl-35254140

We reported the frequency of resistance gene detection in Gram-negative blood culture isolates and correlated these findings with corresponding antibiograms. Data were obtained from 1045 isolates tested on the GenMark Dx ePlex Blood Culture Identification Gram-Negative Panels at the Mount Sinai Hospital Clinical Microbiology Laboratory in New York from March 2019 to February 2021. Susceptibilities were performed using Vitek 2 (bioMérieux Clinical Diagnostics) or Microscan (Beckman Coulter Inc.). blaCTX-M was detected in 26.4% Klebsiella pneumoniae, 23.5% Escherichia coli, and 16.4% Proteus mirabilis isolates. As would be expected, both blaCTX-M and blaCTX-M negative isolates were likely to be susceptible to newer agents while blaCTX-M positive isolates were more likely to be resistant to earlier generations of beta-lactam antibiotics. 3/204 blaCTX-M-positive isolates were found to be ceftriaxone-susceptible. Conversely, 2.8% ceftriaxone nonsusceptible strains were negative for all ß-lactamase genes on the ePlex BCID-GN panel, including blaCTX-M. The prevalence of CTX-M-producing Enterobacterales remains high in the United States. A small number of blaCTX-M-positive isolates were susceptible to ceftriaxone, and a small number of ceftriaxone nonsusceptible isolates were negative for blaCTX-M. Further studies are needed to determine the optimal management when an isolate is phenotypically susceptible to ceftriaxone, but blaCTX-M is detected. IMPORTANCE There is limited literature on corresponding results obtained from rapid molecular diagnostics with the antibiotic susceptibility profile. We reported a correlation between the results obtained from ePlex and the antibiograms against a large collection of Gram-negative bacteria. We reported that there can be a discrepancy in a small number of cases, but the clinical significance of that is unknown.


Anti-Infective Agents , Ceftriaxone , Anti-Bacterial Agents/pharmacology , Data Analysis , Escherichia coli , Gram-Negative Bacteria/genetics , Microbial Sensitivity Tests , beta-Lactam Resistance , beta-Lactamases/genetics
15.
J Med Virol ; 94(7): 2911-2914, 2022 07.
Article En | MEDLINE | ID: mdl-35243662

The coronavirus disease-2019 (COVID-19) pandemic is still challenging public health systems worldwide, particularly with the emergence of novel SARS-CoV-2 variants with mutations that increase their transmissibility and immune escape. This is the case of the variant of concern Omicron that rapidly spread globally. Here, using epidemiological and genomic data we compared the situations in South Africa as the epicenter of emergence, United Kingdom, and with particular interest New York City. This rapid global dispersal from the place of first report reemphasizes the high transmissibility of Omicron, which needed only two weeks to become dominant in the United Kingdom and New York City. Our analyses suggest that as SARS-CoV-2 continues to evolve, global authorities must prioritize equity in vaccine access and continued genomic surveillance. Future studies are still needed to fully unveil the biological properties of Omicron, but what is certain is that vaccination, large-scale testing, and infection prevention efforts are the greatest arsenal against the COVID-19 pandemic.


COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , New York City/epidemiology , Pandemics , SARS-CoV-2/genetics
16.
J Med Virol ; 94(3): 1154-1161, 2022 03.
Article En | MEDLINE | ID: mdl-34755347

Numerous reports of neuropsychiatric symptoms highlighted the pathologic potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its relationship the onset and/or exacerbation of mental disease. However, coronavirus disease 2019 (COVID-19) treatments, themselves, must be considered as potential catalysts for new-onset neuropsychiatric symptoms in COVID-19 patients. To date, immediate and long-term neuropsychiatric complications following SARS-CoV-2 infection are currently unknown. Here we report on five patients with SARS-CoV-2 infection with possible associated neuropsychiatric involvement, following them clinically until resolution of their symptoms. We will also discuss the contributory roles of chloroquine and dexamethasone in these neuropsychiatric presentations.


COVID-19 Drug Treatment , COVID-19 , Mental Disorders , COVID-19/complications , Chloroquine/therapeutic use , Humans , Mental Disorders/complications , SARS-CoV-2
17.
Diagnostics (Basel) ; 11(7)2021 Jul 15.
Article En | MEDLINE | ID: mdl-34359353

The emergence and rapid proliferation of Coronavirus Disease-2019, throughout the past year, has put an unprecedented strain on the global schema of health infrastructure and health economy. The time-sensitive agenda of identifying the virus in humans and delivering a vaccine to the public constituted an effort to flatten the statistical curve of viral spread as it grew exponentially. At the forefront of this effort was an exigency of developing rapid and accurate diagnostic strategies. These have emerged in various forms over the past year-each with strengths and weaknesses. To date, they fall into three categories: (1) those isolating and replicating viral RNA in patient samples from the respiratory tract (Nucleic Acid Amplification Tests; NAATs), (2) those detecting the presence of viral proteins (Rapid Antigen Tests; RATs) and serology-based exams identifying antibodies to the virus in whole blood and serum. The latter vary in their detection of immunoglobulins of known prevalence in early-stage and late-stage infection. With this review, we delineate the categories of testing measures developed to date, analyze the efficacy of collecting patient specimens from diverse regions of the respiratory tract, and present the up and coming technologies which have made pathogen identification easier and more accessible to the public.

18.
IDCases ; 25: e01231, 2021.
Article En | MEDLINE | ID: mdl-34377666

Capnocytophaga sputigena is a facultatively-anaerobic bacterium that is part of the human oropharyngeal microflora. Although C. sputigena bacteremia is uncommon, systemic infections have been reported in both immunocompetent and immunocompromised patients. We report a case of catheter-related bloodstream infection by C. sputigena and highlight its enhanced biofilm-forming capacity in vitro.

19.
J Neurovirol ; 27(4): 550-556, 2021 Aug.
Article En | MEDLINE | ID: mdl-34101086

Alice-in-Wonderland syndrome (AIWS) is a perceptual disorder embracing a spectrum of self-experienced paroxysmal body image illusions including most commonly distortions of shape (metamorphopsia), size (macropsia or micropsia), distance (pelopsia or teleopsia), movement, and color among other visual and somesthetic distortions. Depersonalization, derealization, and auditory hallucinations have also been described. Recent reports suggest that infectious diseases are the predominant etiology for AIWS, especially among children. This article reviews current understanding regarding the association between infection and development of AIWS.


Alice in Wonderland Syndrome/etiology , Infections/complications , Humans
20.
IDCases ; 25: e01173, 2021.
Article En | MEDLINE | ID: mdl-34141583

We describe a case of Lemierre's syndrome (LS) caused by a hypervirulent strain of Klebsiella pneumoniae in a 63-year-old female with hypertension, hyperlipidemia, and diabetes mellitus, who presented with right neck pain and fevers. Computerized tomography of the neck and chest revealed an occluded right internal jugular vein secondary to thrombosis and septic emboli in lungs. Blood cultures grew K. pneumoniae. The patient was treated with ampicillin-sulbactam and then transitioned to amoxicillin-clavulanate to complete a 6-week course of antibiotics, and a 3-month course of rivaroxaban. String test of the K. pneumoniae isolate was positive at 2 cm. Whole genome sequencing identified several genes associated with the hypervirulent strain, notably the genes encoding for aerobactin (iucA and iucB) and salmochelin (iroB) iron acquisition systems. LS can rarely be caused by K. pneumoniae. Clinicians should monitor for known complications, such as septic emboli in patients with LS.

...