Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 76
1.
J Neurol Sci ; 461: 123042, 2024 May 09.
Article En | MEDLINE | ID: mdl-38788286

Degenerative Cervical Myelopathy (DCM) is the functional derangement of the spinal cord resulting from vertebral column spondylotic degeneration. Typical neurological symptoms of DCM include gait imbalance, hand/arm numbness, and upper extremity dexterity loss. Greater spinal cord compression is believed to lead to a higher rate of neurological deterioration, although clinical experience suggests a more complex mechanism involving spinal canal diameter (SCD). In this study, we utilized machine learning clustering to understand the relationship between SCD and different patterns of cord compression (i.e. compression at one disc level, two disc levels, etc.) to identify patient groups at risk of neurological deterioration. 124 MRI scans from 51 non-operative DCM patients were assessed through manual scoring of cord compression and SCD measurements. Dimensionality reduction techniques and k-means clustering established patient groups that were then defined with their unique risk criteria. We found that the compression pattern is unimportant at SCD extremes (≤14.5 mm or > 15.75 mm). Otherwise, severe spinal cord compression at two disc levels increases deterioration likelihood. Notably, if SCD is normal and cord compression is not severe at multiple levels, deterioration likelihood is relatively reduced, even if the spinal cord is experiencing compression. We elucidated five patient groups with their associated risks of deterioration, according to both SCD range and cord compression pattern. Overall, SCD and focal cord compression alone do not reliably predict an increased risk of neurological deterioration. Instead, the specific combination of narrow SCD with multi-level focal cord compression increases the likelihood of neurological deterioration in mild DCM patients.

2.
Spine J ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38679077

BACKGROUND CONTEXT: Degenerative cervical myelopathy (DCM) is the most common form of atraumatic spinal cord injury globally. Degeneration of spinal discs, bony osteophyte growth and ligament pathology results in physical compression of the spinal cord contributing to damage of white matter tracts and grey matter cellular populations. This results in an insidious neurological and functional decline in patients which can lead to paralysis. Magnetic resonance imaging (MRI) confirms the diagnosis of DCM and is a prerequisite to surgical intervention, the only known treatment for this disorder. Unfortunately, there is a weak correlation between features of current commonly acquired MRI scans ("community MRI, cMRI") and the degree of disability experienced by a patient. PURPOSE: This study examines the predictive ability of current MRI sequences relative to "advanced MRI" (aMRI) metrics designed to detect evidence of spinal cord injury secondary to degenerative myelopathy. We hypothesize that the utilization of higher fidelity aMRI scans will increase the effectiveness of machine learning models predicting DCM severity and may ultimately lead to a more efficient protocol for identifying patients in need of surgical intervention. STUDY DESIGN/SETTING: Single institution analysis of imaging registry of patients with DCM. PATIENT SAMPLE: A total of 296 patients in the cMRI group and 228 patients in the aMRI group. OUTCOME MEASURES: Physiologic measures: accuracy of machine learning algorithms to detect severity of DCM assessed clinically based on the modified Japanese Orthopedic Association (mJOA) scale. METHODS: Patients enrolled in the Canadian Spine Outcomes Research Network registry with DCM were screened and 296 cervical spine MRIs acquired in cMRI were compared with 228 aMRI acquisitions. aMRI acquisitions consisted of diffusion tensor imaging, magnetization transfer, T2-weighted, and T2*-weighted images. The cMRI group consisted of only T2-weighted MRI scans. Various machine learning models were applied to both MRI groups to assess accuracy of prediction of baseline disease severity assessed clinically using the mJOA scale for cervical myelopathy. RESULTS: Through the utilization of Random Forest Classifiers, disease severity was predicted with 41.8% accuracy in cMRI scans and 73.3% in the aMRI scans. Across different predictive model variations tested, the aMRI scans consistently produced higher prediction accuracies compared to the cMRI counterparts. CONCLUSIONS: aMRI metrics perform better in machine learning models at predicting disease severity of patients with DCM. Continued work is needed to refine these models and address DCM severity class imbalance concerns, ultimately improving model confidence for clinical implementation.

3.
J Clin Med ; 13(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673475

Background: The objective of this study was to evaluate if imbalance influences complication rates, radiological outcomes, and patient-reported outcomes (PROMs) following adult spinal deformity (ASD) surgery. Methods: ASD patients with baseline and 2-year radiographic and PROMs were included. Patients were grouped according to whether they answered yes or no to a recent history of pre-operative loss of balance. The groups were propensity-matched by age, pelvic incidence-lumbar lordosis (PI-LL), and surgical invasiveness score. Results: In total, 212 patients were examined (106 in each group). Patients with gait imbalance had worse baseline PROM measures, including Oswestry disability index (45.2 vs. 36.6), SF-36 mental component score (44 vs. 51.8), and SF-36 physical component score (p < 0.001 for all). After 2 years, patients with gait imbalance had less pelvic tilt correction (-1.2 vs. -3.6°, p = 0.039) for a comparable PI-LL correction (-11.9 vs. -15.1°, p = 0.144). Gait imbalance patients had higher rates of radiographic proximal junctional kyphosis (PJK) (26.4% vs. 14.2%) and implant-related complications (47.2% vs. 34.0%). After controlling for age, baseline sagittal parameters, PI-LL correction, and comorbidities, patients with imbalance had 2.2-times-increased odds of PJK after 2 years. Conclusions: Patients with a self-reported loss of balance/unsteady gait have significantly worse PROMs and higher risk of PJK.

4.
J Neurosurg Spine ; : 1-8, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38457792

OBJECTIVE: Complex spinal deformity surgeries may involve significant blood loss. The use of antifibrinolytic agents such as tranexamic acid (TXA) has been proven to reduce perioperative blood loss. However, for patients with a history of thromboembolic events, there is concern of increased risk when TXA is used during these surgeries. This study aimed to assess whether TXA use in patients undergoing complex spinal deformity correction surgeries increases the risk of thromboembolic complications based on preexisting thromboembolic risk factors. METHODS: Data were analyzed for adult patients who received TXA during surgical correction for spinal deformity at 21 North American centers between August 2018 and October 2022. Patients with preexisting thromboembolic events and other risk factors (history of deep venous thrombosis [DVT], pulmonary embolism [PE], myocardial infarction [MI], stroke, peripheral vascular disease, or cancer) were identified. Thromboembolic complication rates were assessed during the postoperative 90 days. Univariate and multivariate analyses were performed to assess thromboembolic outcomes in high-risk and low-risk patients who received intravenous TXA. RESULTS: Among 411 consecutive patients who underwent complex spinal deformity surgery and received TXA intraoperatively, 130 (31.6%) were considered high-risk patients. There was no significant difference in thromboembolic complications between patients with and those without preexisting thromboembolic risk factors in univariate analysis (high-risk group vs low-risk group: 8.5% vs 2.8%, p = 0.45). Specifically, there were no significant differences between groups regarding the 90-day postoperative rates of DVT (high-risk group vs low-risk group: 1.5% vs 1.4%, p = 0.98), PE (2.3% vs 1.8%, p = 0.71), acute MI (1.5% vs 0%, p = 0.19), or stroke (0.8% vs 1.1%, p > 0.99). On multivariate analysis, high-risk status was not a significant independent predictor for any of the thromboembolic complications. CONCLUSIONS: Administration of intravenous TXA during the correction procedure did not change rates of thromboembolic events, acute MI, or stroke in this cohort of adult spinal deformity surgery patients.

5.
J Neurosurg Spine ; : 1-8, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38457811

OBJECTIVE: Sagittal alignment measured on standing radiography remains a fundamental component of surgical planning for adult spinal deformity (ASD). However, the relationship between classic sagittal alignment parameters and objective metrics, such as walking time (WT) and grip strength (GS), remains unknown. The objective of this work was to determine if ASD patients with worse baseline sagittal malalignment have worse objective physical metrics and if those metrics have a stronger relationship to patient-reported outcome metrics (PROMs) than standing alignment. METHODS: The authors conducted a retrospective review of a multicenter ASD cohort. ASD patients underwent baseline testing with the timed up-and-go 6-m walk test (seconds) and for GS (pounds). Baseline PROMs were surveyed, including Oswestry Disability Index (ODI), Patient-Reported Outcomes Measurement Information System (PROMIS), Scoliosis Research Society (SRS)-22r, and Veterans RAND 12 (VR-12) scores. Standard spinopelvic measurements were obtained (sagittal vertical axis [SVA], pelvic tilt [PT], and mismatch between pelvic incidence and lumbar lordosis [PI-LL], and SRS-Schwab ASD classification). Univariate and multivariable linear regression modeling was performed to interrogate associations between objective physical metrics, sagittal parameters, and PROMs. RESULTS: In total, 494 patients were included, with mean ± SD age 61 ± 14 years, and 68% were female. Average WT was 11.2 ± 6.1 seconds and average GS was 56.6 ± 24.9 lbs. With increasing PT, PI-LL, and SVA quartiles, WT significantly increased (p < 0.05). SRS-Schwab type N patients demonstrated a significantly longer average WT (12.5 ± 6.2 seconds), and type T patients had a significantly shorter WT time (7.9 ± 2.7 seconds, p = 0.03). With increasing PT quartiles, GS significantly decreased (p < 0.05). SRS-Schwab type T patients had a significantly higher average GS (68.8 ± 27.8 lbs), and type L patients had a significantly lower average GS (51.6 ± 20.4 lbs, p = 0.03). In the frailty-adjusted multivariable linear regression analyses, WT was more strongly associated with PROMs than sagittal parameters. GS was more strongly associated with ODI and PROMIS Physical Function scores. CONCLUSIONS: The authors observed that increasing baseline sagittal malalignment is associated with slower WT, and possibly weaker GS, in ASD patients. WT has a stronger relationship to PROMs than standing alignment parameters. Objective physical metrics likely offer added value to standard spinopelvic measurements in ASD evaluation and surgical planning.

6.
Spine (Phila Pa 1976) ; 49(11): 743-751, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38375611

STUDY DESIGN: Retrospective review of prospectively collected data. OBJECTIVE: To investigate the effect of lower extremity osteoarthritis on sagittal alignment and compensatory mechanisms in adult spinal deformity (ASD). BACKGROUND: Spine, hip, and knee pathologies often overlap in ASD patients. Limited data exists on how lower extremity osteoarthritis impacts sagittal alignment and compensatory mechanisms in ASD. PATIENTS AND METHODS: In total, 527 preoperative ASD patients with full body radiographs were included. Patients were grouped by Kellgren-Lawrence grade of bilateral hips and knees and stratified by quartile of T1-Pelvic Angle (T1PA) severity into low-, mid-, high-, and severe-T1PA. Full-body alignment and compensation were compared across quartiles. Regression analysis examined the incremental impact of hip and knee osteoarthritis severity on compensation. RESULTS: The mean T1PA for low-, mid-, high-, and severe-T1PA groups was 7.3°, 19.5°, 27.8°, and 41.6°, respectively. Mid-T1PA patients with severe hip osteoarthritis had an increased sagittal vertical axis and global sagittal alignment ( P <0.001). Increasing hip osteoarthritis severity resulted in decreased pelvic tilt ( P =0.001) and sacrofemoral angle ( P <0.001), but increased knee flexion ( P =0.012). Regression analysis revealed that with increasing T1PA, pelvic tilt correlated inversely with hip osteoarthritis and positively with knee osteoarthritis ( r2 =0.812). Hip osteoarthritis decreased compensation through sacrofemoral angle (ß-coefficient=-0.206). Knee and hip osteoarthritis contributed to greater knee flexion (ß-coefficients=0.215, 0.101; respectively). For pelvic shift, only hip osteoarthritis significantly contributed to the model (ß-coefficient=0.100). CONCLUSIONS: For the same magnitude of spinal deformity, increased hip osteoarthritis severity was associated with worse truncal and full body alignment with posterior translation of the pelvis. Patients with severe hip and knee osteoarthritis exhibited decreased hip extension and pelvic tilt but increased knee flexion. This examines sagittal alignment and compensation in ASD patients with hip and knee arthritis and may help delineate whether hip and knee flexion is due to spinal deformity compensation or lower extremity osteoarthritis.


Osteoarthritis, Hip , Osteoarthritis, Knee , Humans , Male , Female , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/surgery , Middle Aged , Osteoarthritis, Hip/diagnostic imaging , Osteoarthritis, Hip/physiopathology , Aged , Retrospective Studies , Adult , Spinal Curvatures/diagnostic imaging , Spinal Curvatures/physiopathology , Radiography
7.
J Neurosurg Spine ; 40(5): 622-629, 2024 May 01.
Article En | MEDLINE | ID: mdl-38364226

OBJECTIVE: The present study utilized recently developed in-construct measurements in simulations of cervical deformity surgery in order to assess undercorrection and predict distal junctional kyphosis (DJK). METHODS: A retrospective review of a database of operative cervical deformity patients was analyzed for severe DJK and mild DJK. C2-lower instrumented vertebra (LIV) sagittal angle (SA) was measured postoperatively, and the correction was simulated in the preoperative radiograph in order to match the C2-LIV by using the planning software. Linear regression analysis that used C2 pelvic angle (CPA) and pelvic tilt (PT) determined the simulated PT that matched the virtual CPA. Linear regression analysis was used to determine the C2-T1 SA, C2-T4 SA, and C2-T10 SA that corresponded to DJK of 20° and cervical sagittal vertical axis (cSVA) of 40 mm. RESULTS: Sixty-nine cervical deformity patients were included. Severe and mild DJK occurred in 11 (16%) and 22 (32%) patients, respectively; 3 (4%) required DJK revision. Simulated corrections demonstrated that severe and mild DJK patients had worse alignment compared to non-DJK patients in terms of cSVA (42.5 mm vs 33.0 mm vs 23.4 mm, p < 0.001) and C2-LIV SVA (68.9 mm vs 57.3 mm vs 36.8 mm, p < 0.001). Linear regression revealed the relationships between in-construct measures (C2-T1 SA, C2-T4 SA, and C2-T10 SA), cSVA, and change in DJK (all R > 0.57, p < 0.001). A cSVA of 40 mm corresponded to C2-T4 SA of 10.4° and C2-T10 SA of 28.0°. A DJK angle change of 10° corresponded to C2-T4 SA of 5.8° and C2-T10 SA of 20.1°. CONCLUSIONS: Simulated cervical deformity corrections demonstrated that severe DJK patients have insufficient corrections compared to patients without DJK. In-construct measures assess sagittal alignment within the fusion separate from DJK and subjacent compensation. They can be useful as intraoperative tools to gauge the adequacy of cervical deformity correction.


Cervical Vertebrae , Kyphosis , Spinal Fusion , Humans , Kyphosis/surgery , Kyphosis/diagnostic imaging , Cervical Vertebrae/surgery , Cervical Vertebrae/diagnostic imaging , Retrospective Studies , Female , Spinal Fusion/methods , Male , Middle Aged , Aged , Adult , Treatment Outcome
8.
Article En | MEDLINE | ID: mdl-38270393

STUDY DESIGN: Retrospective analysis of prospectively collected data. OBJECTIVE: Evaluate the impact of correcting to normative segmental lordosis values on post-operative outcomes. BACKGROUND: Restoring lumbar lordosis magnitude is crucial in adult spinal deformity surgery, but the optimal location and segmental distribution remains unclear. METHODS: Patients were grouped based on offset to normative segmental lordosis values, extracted from recent publications. Matched patients were within 10% of the cohort's mean offset, less than or over 10% were under- and over-corrected. Surgical technique, PROMs, and surgical complications were compared across groups at baseline and 2-year. RESULTS: 510 patients with an average age of 64.6, mean CCI 2.08, and average follow-up of 25 months. L4-5 was least likely to be matched (19.1%), while L4-S1 was the most likely (24.3%). More patients were overcorrected at proximal levels (T10-L2; Undercorrected, U: 32.2% vs. Matched, M: 21.7% vs. Overcorrected, O: 46.1%) and undercorrected at distal levels (L4-S1: U: 39.0% vs. M: 24.3% vs. O: 36.8%). Postoperative ODI was comparable across correction groups at all spinal levels except at L4-S1 and T10-L2/L4-S1, where overcorrected patients and matched were better than undercorrected (U: 32.1 vs. M: 25.4 vs. O: 26.5, P=0.005; U: 36.2 vs. M: 24.2 vs. O: 26.8, P=0.001; respectively). Patients overcorrected at T10-L2 experienced higher rates of proximal junctional failure (PJF) (U: 16.0% vs. M: 15.6% vs. O: 32.8%, P<0.001) and had greater posterior inclination of the upper instrumented vertebra (UIV) (U: -9.2±9.4° vs. M: -9.6±9.1° vs. O: -12.2±10.0°, P<0.001), whereas undercorrection at these levels led to higher rates of revision for implant failure (U: 14.2% vs. M: 7.3% vs. O: 6.4%, P=0.025). CONCLUSIONS: Patients undergoing fusion for adult spinal deformity suffer higher rates of PJF with overcorrection and increased rates of implant failure with undercorrection based on normative segmental lordosis. LEVEL OF EVIDENCE: IV.

9.
Oper Neurosurg (Hagerstown) ; 26(2): 156-164, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38227826

BACKGROUND AND OBJECTIVES: Achieving spinopelvic realignment during adult spinal deformity (ASD) surgery does not always produce ideal outcomes. Little is known whether compensation in lower extremities (LEs) plays a role in this disassociation. The objective is to analyze lower extremity compensation after complex ASD surgery, its effect on outcomes, and whether correction can alleviate these mechanisms. METHODS: We included patients with complex ASD with 6-week data. LE parameters were as follows: sacrofemoral angle, knee flexion angle, and ankle flexion angle. Each parameter was ranked, and upper tertile was deemed compensation. Patients compensating and not compensating postoperatively were propensity score matched for body mass index, frailty, and T1 pelvic angle. Linear regression assessed correlation between LE parameters and baseline deformity, demographics, and surgical details. Multivariate analysis controlling for baseline deformity and history of total knee/hip arthroplasty evaluated outcomes. RESULTS: Two hundred and ten patients (age: 61.3 ± 14.1 years, body mass index: 27.4 ± 5.8 kg/m2, Charlson Comorbidity Index: 1.1 ± 1.6, 72% female, 22% previous total joint arthroplasty, 24% osteoporosis, levels fused: 13.1 ± 3.8) were included. At baseline, 59% were compensating in LE: 32% at hips, 39% knees, and 36% ankles. After correction, 61% were compensating at least one joint. Patients undercorrected postoperatively were less likely to relieve LE compensation (odds ratio: 0.2, P = .037). Patients compensating in LE were more often undercorrected in age-adjusted pelvic tilt, pelvic incidence, lumbar lordosis, and T1 pelvic angle and disproportioned in Global Alignment and Proportion (P < .05). Patients matched in sagittal age-adjusted score at 6 weeks but compensating in LE were more likely to develop proximal junctional kyphosis (odds ratio: 4.1, P = .009) and proximal junctional failure (8% vs 0%, P = .035) than those sagittal age-adjusted score-matched and not compensating in LE. CONCLUSION: Perioperative lower extremity compensation was a product of undercorrecting complex ASD. Even in age-adjusted realignment, compensation was associated with global undercorrection and junctional failure. Consideration of lower extremities during planning is vital to avoid adverse outcomes in perioperative course after complex ASD surgery.


Kyphosis , Lordosis , Adult , Humans , Female , Middle Aged , Aged , Infant , Male , Lordosis/diagnostic imaging , Lordosis/surgery , Kyphosis/surgery , Lower Extremity/diagnostic imaging , Lower Extremity/surgery , Pelvis , Outcome Assessment, Health Care
10.
Spine (Phila Pa 1976) ; 49(5): 313-320, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-37942794

STUDY DESIGN: Retrospective review of prospectively collected data. OBJECTIVE: To analyze the impact of operative room (OR) time in adult spinal deformity (ASD) surgery on patient outcomes. BACKGROUND: It is currently unknown if OR time in ASD patients matched for deformity severity and surgical invasiveness is associated with patient outcomes. MATERIALS AND METHODS: ASD patients with baseline and two-year postoperative radiographic and patient-reported outcome measures (PROM) data, undergoing a posterior-only approach for long fusion (>L1-Ilium) were included. Patients were grouped into short OR time (<40th percentile: <359 min) and long OR time (>60th percentile: >421 min). Groups were matched by age, baseline deformity severity, and surgical invasiveness. Demographics, radiographic, PROM data, fusion rate, and complications were compared between groups at baseline and two years follow-up. RESULTS: In total, 270 patients were included for analysis: the mean OR time was 286 minutes in the short OR group versus 510 minutes in the long OR group ( P <0.001). Age, gender, percent of revision cases, surgical invasiveness, pelvic incidence minus lumbar lordosis, sagittal vertical axis, and pelvic tilt were comparable between groups ( P >0.05). Short OR had a slightly lower body mass index than the short OR group ( P <0.001) and decompression was more prevalent in the long OR time ( P =0.042). Patients in the long group had greater hospital length of stay ( P =0.02); blood loss ( P <0.001); proportion requiring intensive care unit ( P =0.003); higher minor complication rate ( P =0.001); with no significant differences for major complications or revision procedures ( P >0.5). Both groups had comparable radiographic fusion rates ( P =0.152) and achieved improvement in sagittal alignment measures, Oswestry disability index, and Short Form-36 ( P <0.001). CONCLUSION: Shorter OR time for ASD correction is associated with a lower minor complication rate, a lower estimated blood loss, fewer intensive care unit admissions, and a shorter hospital length of stay without sacrificing alignment correction or PROMs. Maximizing operative efficiency by minimizing OR time in ASD surgery has the potential to benefit patients, surgeons, and hospital systems.


Lordosis , Spinal Fusion , Adult , Humans , Length of Stay , Operative Time , Treatment Outcome , Spinal Fusion/methods , Lordosis/surgery , Retrospective Studies , Patient Reported Outcome Measures , Quality of Life
11.
Spine (Phila Pa 1976) ; 49(6): 405-411, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-37698284

STUDY DESIGN: Retrospective review of an adult deformity database. OBJECTIVE: To identify pelvic incidence (PI) and age-appropriate physical function alignment targets using a component angle of T1-pelvic angle within the fusion to define correction and their relationship to proximal junctional kyphosis (PJK) and clinical outcomes. SUMMARY OF BACKGROUND DATA: In preoperative planning, a patient's PI is often utilized to determine the alignment target. In a trend toward more patient-specific planning, age-specific alignment has been shown to reduce the risk of mechanical failures. PI and age have not been analyzed with respect to defining a functional alignment. METHODS: A database of patients with operative adult spinal deformity was analyzed. Patients fused to the pelvis and upper-instrumented vertebrae above T11 were included. Alignment within the fusion correlated with clinical outcomes and PI. Short form 36-Physical Component Score (SF36-PCS) normative data and PI were used to compute functional alignment for each patient. Overcorrected, under-corrected, and functionally corrected groups were determined using T10-pelvic angle (T10PA). RESULTS: In all, 1052 patients met the inclusion criteria. T10PA correlated with SF36-PCS and PI (R=0.601). At six weeks, 40.7% were functionally corrected, 39.4% were overcorrected, and 20.9% were under-corrected. The PJK incidence rate was 13.6%. Overcorrected patients had the highest PJK rate (18.1%) compared with functionally (11.3%) and under-corrected (9.5%) patients ( P <0.05). Overcorrected patients had a trend toward more PJK revisions. All groups improved in HRQL; however, under-corrected patients had the worst 1-year SF36-PCS offset relative to normative patients of equivalent age (-8.1) versus functional (-6.1) and overcorrected (-4.5), P <0.05. CONCLUSIONS: T10PA was used to determine functional alignment, an alignment based on PI and age-appropriate physical function. Correcting patients to functional alignment produced improvements in clinical outcomes, with the lowest rates of PJK. This patient-specific approach to spinal alignment provides adult spinal deformity correction targets that can be used intraoperatively.


Kyphosis , Spinal Fusion , Adult , Humans , Spine/surgery , Kyphosis/epidemiology , Retrospective Studies , Incidence , Spinal Fusion/methods , Postoperative Complications/etiology
12.
Global Spine J ; : 21925682231214059, 2023 Nov 10.
Article En | MEDLINE | ID: mdl-37948666

STUDY DESIGN: Multicenter comparative cohort. OBJECTIVE: Studies have shown markedly higher rates of complications and all-cause mortality following surgery for adult cervical deformity (ACD) compared with adult thoracolumbar deformity (ATLD), though the reasons for these differences remain unclear. Our objectives were to compare baseline frailty, disability, and comorbidities between ACD and complex ATLD patients undergoing surgery. METHODS: Two multicenter prospective adult spinal deformity registries were queried, one ATLD and one ACD. Baseline clinical and frailty measures were compared between the cohorts. RESULTS: 616 patients were identified (107 ACD and 509 ATLD). These groups had similar mean age (64.6 vs 60.8 years, respectively, P = .07). ACD patients were less likely to be women (51.9% vs 69.5%, P < .001) and had greater Charlson Comorbidity Index (1.5 vs .9, P < .001) and ASA grade (2.7 vs 2.4, P < .001). ACD patients had worse VR-12 Physical Component Score (PCS, 25.7 vs 29.9, P < .001) and PROMIS Physical Function Score (33.3 vs 35.3, P = .031). All frailty measures were significantly worse for ACD patients, including hand dynamometer (44.6 vs 55.6 lbs, P < .001), CSHA Clinical Frailty Score (CFS, 4.0 vs 3.2, P < .001), and Edmonton Frailty Scale (EFS, 5.15 vs 3.21, P < .001). Greater proportions of ACD patients were frail (22.9% vs 5.7%) or vulnerable (15.6% vs 10.9%) based on EFS (P < .001). CONCLUSIONS: Compared with ATLD patients, ACD patients had worse baseline characteristics on all measures assessed (comorbidities/disability/frailty). These differences may help account for greater risk of complications and all-cause mortality previously observed in ACD patients and facilitate strategies for better preoperative optimization.

13.
J Clin Med ; 12(17)2023 Aug 26.
Article En | MEDLINE | ID: mdl-37685633

BACKGROUND: While reimbursement is centered on 90-day outcomes, many patients may still achieve optimal, long-term outcomes following adult spinal deformity (ASD) surgery despite transient short-term complications. OBJECTIVE: Compare long-term clinical success and cost-utility between patients achieving optimal realignment and suboptimally aligned peers. STUDY DESIGN/SETTING: Retrospective cohort study of a prospectively collected multicenter database. METHODS: ASD patients with two-year (2Y) data included. Groups were propensity score matched (PSM) for age, frailty, body mass index (BMI), Charlson Comorbidity Index (CCI), and baseline deformity. Optimal radiographic criteria are defined as meeting low deformity in all three (Scoliosis Research Society) SRS-Schwab parameters or being proportioned in Global Alignment and Proportionality (GAP). Cost-per-QALY was calculated for each time point. Multivariable logistic regression analysis and ANCOVA (analysis of covariance) adjusting for baseline disability and deformity (pelvic incidence (PI), pelvic incidence minus lumbar lordosis (PI-LL)) were used to determine the significance of surgical details, complications, clinical outcomes, and cost-utility. RESULTS: A total of 930 patients were considered. Following PSM, 253 "optimal" (O) and 253 "not optimal" (NO) patients were assessed. The O group underwent more invasive procedures and had more levels fused. Analysis of complications by two years showed that the O group suffered less overall major (38% vs. 52%, p = 0.021) and major mechanical complications (12% vs. 22%, p = 0.002), and less reoperations (23% vs. 33%, p = 0.008). Adjusted analysis revealed O patients more often met MCID (minimal clinically important difference) in SF-36 PCS, SRS-22 Pain, and Appearance. Cost-utility-adjusted analysis determined that the O group generated better cost-utility by one year and maintained lower overall cost and costs per QALY (both p < 0.001) at two years. CONCLUSIONS: Fewer late complications (mechanical and reoperations) are seen in optimally aligned patients, leading to better long-term cost-utility overall. Therefore, the current focus on avoiding short-term complications may be counterproductive, as achieving optimal surgical correction is critical for long-term success.

14.
J Neurosurg Spine ; 39(6): 774-784, 2023 12 01.
Article En | MEDLINE | ID: mdl-37542446

OBJECTIVE: The authors of this study sought to evaluate the predictive role of global sagittal alignment and upper instrumented vertebra (UIV) level in symptomatic proximal junctional kyphosis (PJK) among patients with adult spinal deformity (ASD). METHODS: Data on ASD patients who had undergone fusion of ≥ 5 vertebrae from 2008 to 2018 and with a minimum follow-up of 1 year were obtained from a prospectively collected multicenter database and evaluated (n = 1312). Radiographs were obtained preoperatively and at 6 weeks, 6 months, 1 year, 2 years, and 3 years postoperatively. The 22-Item Scoliosis Research Society Patient Questionnaire Revised (SRS-22r) scores were collected preoperatively, 1 year postoperatively, and 2 years postoperatively. Symptomatic PJK was defined as a kyphotic increase > 20° in the Cobb angle from the UIV to the UIV+2. At 6 weeks postoperatively, sagittal parameters were evaluated and patients were categorized by global alignment and proportion (GAP) score/category and SRS-Schwab sagittal modifiers. Patients were stratified by UIV level: upper thoracic (UT) UIV ≥ T8 or lower thoracic (LT) UIV ≤ T9. RESULTS: Patients who developed symptomatic PJK (n = 260) had worse 1-year postoperative SRS-22r mental health (3.70 vs 3.86) and total (3.56 vs 3.67) scores, as well as worse 2-year postoperative self-image (3.45 vs 3.65) and satisfaction (4.03 vs 4.22) scores (all p ≤ 0.04). In the whole study cohort, patients with PJK had less pelvic incidence-lumbar lordosis (PI-LL) mismatch (-0.24° vs 3.29°, p < 0.001) but no difference in their GAP score/category or SRS-Schwab sagittal modifiers compared with the patients without PJK. Regression showed a higher risk of PJK with a pelvic tilt (PT) grade ++ (OR 2.35) and less risk with a PI-LL grade ++ (OR 0.35; both p < 0.01). When specifically analyzing the LT UIV cohort, patients with PJK had a higher GAP score (5.66 vs 4.79), greater PT (23.02° vs 20.90°), and less PI-LL mismatch (1.61° vs 4.45°; all p ≤ 0.02). PJK patients were less likely to be proportioned postoperatively (17.6% vs 30.0%, p = 0.015), and regression demonstrated a greater PJK risk with severe disproportion (OR 1.98) and a PT grade ++ (OR 3.15) but less risk with a PI-LL grade ++ (OR 0.45; all p ≤ 0.01). When specifically evaluating the UT UIV cohort, the PJK patients had less PI-LL mismatch (-2.11° vs 1.45°) but no difference in their GAP score/category. Regression showed a greater PJK risk with a PT grade + (OR 1.58) and a decreased risk with a PI-LL grade ++ (OR 0.21; both p < 0.05). CONCLUSIONS: Symptomatic PJK leads to worse patient-reported outcomes and is associated with less postoperative PI-LL mismatch and greater postoperative PT. A worse postoperative GAP score and disproportion are only predictive of symptomatic PJK in patients with an LT UIV.


Kyphosis , Lordosis , Spinal Fusion , Humans , Adult , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Retrospective Studies , Postoperative Complications/diagnostic imaging , Postoperative Complications/epidemiology , Postoperative Complications/surgery , Kyphosis/diagnostic imaging , Kyphosis/surgery , Lordosis/diagnostic imaging , Lordosis/surgery , Thoracic Vertebrae/diagnostic imaging , Thoracic Vertebrae/surgery , Spinal Fusion/methods
15.
J Bone Joint Surg Am ; 105(18): 1410-1419, 2023 09 20.
Article En | MEDLINE | ID: mdl-37478308

BACKGROUND: Height gain following a surgical procedure for patients with adult spinal deformity (ASD) is incompletely understood, and it is unknown if height gain correlates with patient-reported outcome measures (PROMs). METHODS: This was a retrospective cohort study of patients undergoing ASD surgery. Patients with baseline, 6-week, and subanalysis of 1-year postoperative full-body radiographic and PROM data were examined. Correlation analysis examined relationships between vertical height differences and PROMs. Regression analysis was utilized to preoperatively estimate T1-S1 and S1-ankle height changes. RESULTS: This study included 198 patients (mean age, 57 years; 69% female); 147 patients (74%) gained height. Patients with height loss, compared with those who gained height, experienced greater increases in thoracolumbar kyphosis (2.81° compared with -7.37°; p < 0.001) and thoracic kyphosis (12.96° compared with 4.42°; p = 0.003). For patients with height gain, sagittal and coronal alignment improved from baseline to postoperatively: 25° to 21° for pelvic tilt (PT), 14° to 3° for pelvic incidence - lumbar lordosis (PI-LL), and 60 mm to 17 mm for sagittal vertical axis (SVA) (all p < 0.001). The full-body mean height gain was 7.6 cm, distributed as follows: sella turcica-C2, 2.9 mm; C2-T1, 2.8 mm; T1-S1 (trunk gain), 3.8 cm; and S1-ankle (lower-extremity gain), 3.3 cm (p < 0.001). T1-S1 height gain correlated with the thoracic Cobb angle correction and the maximum Cobb angle correction (p = 0.002). S1-ankle height gain correlated with the corrections in PT, PI-LL, and SVA (p < 0.001). T1-ankle height gain correlated with the corrections in PT (p < 0.001) and SVA (p = 0.03). Trunk height gain correlated with improved Scoliosis Research Society (SRS-22r) Appearance scores (r = 0.20; p = 0.02). Patient-Reported Outcomes Measurement Information System (PROMIS) Depression scores correlated with S1-ankle height gain (r = -0.19; p = 0.03) and C2-T1 height gain (r = -0.18; p = 0.04). A 1° correction in a thoracic scoliosis Cobb angle corresponded to a 0.2-mm height gain, and a 1° correction in a thoracolumbar scoliosis Cobb angle resulted in a 0.25-mm height gain. A 1° improvement in PI-LL resulted in a 0.2-mm height gain. CONCLUSIONS: Most patients undergoing ASD surgery experienced height gain following deformity correction, with a mean full-body height gain of 7.6 cm. Height gain can be estimated preoperatively with predictive ratios, and height gain was correlated with improvements in reported SRS-22r appearance and PROMIS scores. LEVEL OF EVIDENCE: Therapeutic Level III . See Instructions for Authors for a complete description of levels of evidence.


Kyphosis , Lordosis , Scoliosis , Humans , Adult , Female , Middle Aged , Male , Scoliosis/surgery , Retrospective Studies , Quality of Life , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Thoracic Vertebrae/surgery , Lordosis/diagnostic imaging , Lordosis/etiology , Lordosis/surgery , Kyphosis/diagnostic imaging , Kyphosis/etiology , Kyphosis/surgery
16.
J Neurosurg Spine ; 39(3): 311-319, 2023 09 01.
Article En | MEDLINE | ID: mdl-37310039

OBJECTIVE: The objective of this study was to calibrate an updated predictive model incorporating novel clinical, radiographic, and prophylactic measures to assess the risk of proximal junctional kyphosis (PJK) and failure (PJF). METHODS: Operative patients with adult spinal deformity (ASD) and baseline and 2-year postoperative data were included. PJK was defined as ≥ 10° in sagittal Cobb angle between the inferior uppermost instrumented vertebra (UIV) endplate and superior endplate of the UIV + 2 vertebrae. PJF was radiographically defined as a proximal junctional sagittal Cobb angle ≥ 15° with the presence of structural failure and/or mechanical instability, or PJK with reoperation. Backstep conditional binary supervised learning models assessed baseline demographic, clinical, and surgical information to predict the occurrence of PJK and PJF. Internal cross validation of the model was performed via a 70%/30% cohort split. Conditional inference tree analysis determined thresholds at an alpha level of 0.05. RESULTS: Seven hundred seventy-nine patients with ASD (mean 59.87 ± 14.24 years, 78% female, mean BMI 27.78 ± 6.02 kg/m2, mean Charlson Comorbidity Index 1.74 ± 1.71) were included. PJK developed in 50.2% of patients, and 10.5% developed PJF by their last recorded visit. The six most significant demographic, radiographic, surgical, and postoperative predictors of PJK/PJF were baseline age ≥ 74 years, baseline sagittal age-adjusted score (SAAS) T1 pelvic angle modifier > 1, baseline SAAS pelvic tilt modifier > 0, levels fused > 10, nonuse of prophylaxis measures, and 6-week SAAS pelvic incidence minus lumbar lordosis modifier > 1 (all p < 0.015). Overall, the model was deemed significant (p < 0.001), and internally validated receiver operating characteristic analysis returned an area under the curve of 0.923, indicating robust model fit. CONCLUSIONS: PJK and PJF remain critical concerns in ASD surgery, and efforts to reduce the occurrence of PJK and PJF have resulted in the development of novel prophylactic techniques and enhanced clinical and radiographic selection criteria. This study demonstrates a validated model incorporating such techniques that may allow for the prediction of clinically significant PJK and PJF, and thus assist in optimizing patient selection, enhancing intraoperative decision making, and reducing postoperative complications in ASD surgery.


Kyphosis , Lordosis , Spinal Fusion , Humans , Adult , Aged , Infant, Newborn , Calibration , Goals , Follow-Up Studies , Kyphosis/diagnostic imaging , Kyphosis/surgery , Kyphosis/etiology , Lordosis/surgery , Postoperative Complications/diagnostic imaging , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control , Spinal Fusion/methods , Retrospective Studies , Risk Factors
17.
J Neurosurg Spine ; 39(3): 320-328, 2023 09 01.
Article En | MEDLINE | ID: mdl-37327142

OBJECTIVE: Multiple rods are utilized in adult spinal deformity (ASD) surgery to increase construct stiffness. However, the impact of multiple rods on proximal junctional kyphosis (PJK) is not well established. This study aimed to investigate the impact of multiple rods on PJK incidence in ASD patients. METHODS: ASD patients from a prospective multicenter database with a minimum follow-up of 1 year were retrospectively reviewed. Clinical and radiographic data were collected preoperatively, at 6 weeks postoperatively, at 6 months postoperatively, at 1 year postoperatively, and at every subsequent year postoperatively. PJK was defined as a kyphotic increase of > 10° in the Cobb angle from the upper instrumented vertebra (UIV) to UIV+2 as compared with preoperative values. Demographic data, radiographic parameters, and PJK incidence were compared between the multirod and dual-rod patient cohorts. PJK-free survival analysis was performed using Cox regression to control for demographic characteristics, comorbidities, level of fusion, and radiographic parameters. RESULTS: Overall, 307/1300 (23.62%) cases utilized multiple rods. Cases with multiple rods were more likely to be revisions (68.4% vs 46.5%, p < 0.001), to be posterior only (80.7% vs 61.5%, p < 0.001), involve more levels of fusion (mean 11.73 vs 10.60, p < 0.001), and include 3-column osteotomy (42.9% vs 17.1%, p < 0.001). Patients with multiple rods also had greater preoperative pelvic retroversion (mean pelvic tilt 27.95° vs 23.58°, p < 0.001), greater thoracolumbar junction kyphosis (-15.9° vs -11.9°, p = 0.001), and more severe sagittal malalignment (C7-S1 sagittal vertical axis 99.76 mm vs 62.23 mm, p < 0.001), all of which corrected postoperatively. Patients with multiple rods had similar incidence rates of PJK (58.6% vs 58.1%) and revision surgery (13.0% vs 17.7%). The PJK-free survival analysis demonstrated equivalent PJK-free survival durations among the patients with multiple rods (HR 0.889, 95% CI 0.745-1.062, p = 0.195) after controlling for demographic and radiographic parameters. Further stratification based on implant metal type demonstrated noninferior PJK incidence rates with multiple rods in the titanium (57.1% vs 54.6%, p = 0.858), cobalt chrome (60.5% vs 58.7%, p = 0.646), and stainless steel (20% vs 63.7%, p = 0.008) cohorts. CONCLUSIONS: Multirod constructs for ASD are most frequently utilized in revision, long-level reconstructions with 3-column osteotomy. The use of multiple rods in ASD surgery does not result in an increased incidence of PJK and is not affected by rod metal type.


Kyphosis , Spinal Fusion , Humans , Adult , Retrospective Studies , Prospective Studies , Kyphosis/diagnostic imaging , Kyphosis/surgery , Kyphosis/complications , Spine/surgery , Incidence , Spinal Fusion/adverse effects , Postoperative Complications/diagnostic imaging , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Risk Factors
18.
Spine J ; 23(9): 1323-1333, 2023 09.
Article En | MEDLINE | ID: mdl-37160168

BACKGROUND CONTEXT: There is significant variability in minimal clinically important difference (MCID) criteria for lumbar spine surgery that suggests population and primary pathology specific thresholds may be required to help determine surgical success when using patient reported outcome measures (PROMs). PURPOSE: The purpose of this study was to estimate MCID thresholds for 3 commonly used PROMs after surgical intervention for each of 4 common lumbar spine pathologies. STUDY DESIGN/SETTING: Observational longitudinal study of patients from the Canadian Spine Outcomes and Research Network (CSORN) national registry. PATIENT SAMPLE: Patients undergoing surgery from 2015 to 2018 for lumbar spinal stenosis (LSS; n = 856), degenerative spondylolisthesis (DS; n = 591), disc herniation (DH; n = 520) or degenerative disc disease (DDD n = 185) were included. OUTCOME MEASURES: PROMs were collected presurgery and 1-year postsurgery: the Oswestry Disability Index (ODI), and back and leg Numeric Pain Rating Scales (NPRS). At 1-year, patients reported whether they were 'Much better'/'Better'/'Same'/'Worse'/'Much worse' compared to before their surgery. Responses to this item were used as the anchor in analyses to determine surgical MCIDs for benefit ('Much better'/'Better') and substantial benefit ('Much better'). METHODS: MCIDs for absolute and percentage change for each of the 3 PROMs were estimated using a receiving operating curve (ROC) approach, with maximization of Youden's index as primary criterion. Area under the curve (AUC) estimates, sensitivity, specificity and correct classification rates were determined. All analyses were conducted separately by pathology group. RESULTS: MCIDs for ODI change ranged from -10.0 (DDD) to -16.9 (DH) for benefit, and -13.8 (LSS) to -22.0 (DS,DH) for substantial benefit. MCID for back and leg NPRS change were -2 to -3 for each group for benefit and -4.0 for substantial benefit for all groups on back NPRS. MCID estimates for percentage change varied by PROM and pathology group, ranging from -11.1% (ODI for DDD) to -50.0% (leg NPRS for DH) for benefit and from -40.0% (ODI for DDD) to -66.6% (leg NPRS for DH) for substantial benefit. Correct classification rates for all MCID thresholds ranged from 71% to 89% and were relatively lower for absolute vs percent change for those with high or low presurgical scores. CONCLUSIONS: Our findings suggest that the use of generic MCID thresholds across pathologies in lumbar spine surgery is not recommended. For patients with relatively low or high presurgery PROM scores, MCIDs based on percentage change, rather than absolute change, appear generally preferable. These findings have applicability in clinical and research settings, and are important for future surgical prognostic work.


Lumbar Vertebrae , Minimal Clinically Important Difference , Humans , Canada , Longitudinal Studies , Lumbar Vertebrae/surgery , Registries , Treatment Outcome
19.
World Neurosurg ; 175: e1265-e1276, 2023 Jul.
Article En | MEDLINE | ID: mdl-37146876

OBJECTIVE: Lumbosacral pseudoarthrosis is a common complication following adult spine deformity (ASD) surgery. This study assessed the reoperation rate for L5-S1 pseudoarthrosis in the ASD population. Compared with transforaminal lumbar interbody fusions (TLIFs), we hypothesized that anterior lumbar interbody fusion (ALIF) would result in lower rates of L5-S1 pseudarthrosis. METHODS: This is a single center study with patient data retrieved from a prospective ASD database. The patients had a long-segment fusion, ALIF or TLIF at the L5-S1 level with a 2-year follow-up and were divided into 2 groups (TLIF and ALIF). The study's primary outcome was to assess the difference in the reoperation rate for clinical pseudoarthrosis between the TLIF and the ALIF groups. The secondary outcomes measured the radiological pseudoarthrosis rate and identified risks for L5-S1 pseudoarthrosis development. RESULTS: A total of 100 patients were included; 49 patients (mean age, 62.9 years; 77.5% females) were in TLIF and 51 patients (mean age, 64.4 years; 70.6% females) were in the ALIF group. Baseline characteristics were similar in both groups. Thirteen (13%) patients with L5-S1 pseudoarthrosis required reoperation. Clinical pseudoarthrosis was higher in the TLIF group than in the ALIF group (12/49 vs. 1/51; P < 0.001). Univariate analysis demonstrated a higher risk of L5-S1 pseudoarthrosis with TLIF than ALIF (risk ratio, 12.4; 95% confidence interval: 1.68-92.4; P < 0.001). Multivariate analysis revealed 4.86 times the risk of L5-S1 clinical pseudoarthrosis with TLIF than with ALIF (risk ratio, 4.86; 95% confidence interval 0.57-47; P = 0.17), but this ratio did not reach statistical significance. CONCLUSIONS: No difference in reoperation risk for L5-S1 pseudarthrosis was observed based on the method of IF. rhBMP-2 was noted as a significant predictor.


Pseudarthrosis , Spinal Fusion , Female , Humans , Adult , Middle Aged , Male , Spinal Fusion/adverse effects , Spinal Fusion/methods , Lumbar Vertebrae/surgery , Pseudarthrosis/etiology , Pseudarthrosis/surgery , Retrospective Studies , Prospective Studies , Treatment Outcome
20.
Physiother Can ; 75(1): 22-28, 2023.
Article En | MEDLINE | ID: mdl-37250725

Purpose: To determine whether there was an association between self-reported preoperative exercise and postoperative outcomes after lumbar fusion spinal surgery. Method: We performed a retrospective multivariable analysis of the prospective Canadian Spine Outcomes and Research Network (CSORN) database of 2,203 patients who had elective single-level lumbar fusion spinal surgeries. We compared adverse events and hospital length of stay between patients who reported regular exercise (twice or more per week) prior to surgery ("Regular Exercise") to those exercising infrequently (once or less per week) ("Infrequent Exercise") or those who did no exercise ("No Exercise"). For all final analyses, we compared the Regular Exercise group to the combined Infrequent Exercise or No Exercise group. Results: After making adjustments for known confounding factors, we demonstrated that patients in the Regular Exercise group had fewer adverse events (adjusted odds ratio 0.72; 95% CI: 0.57, 0.91; p = 0.006) and significantly shorter lengths of stay (adjusted mean 2.2 vs. 2.5 d, p = 0.029) than the combined Infrequent Exercise or No Exercise group. Conclusions: Patients who exercised regularly twice or more per week prior to surgery had fewer postoperative adverse events and significantly shorter hospital lengths of stay compared to patients that exercised infrequently or did no exercise. Further study is required to determine effectiveness of a targeted prehabilitation programme.


Objectif : déterminer s'il y avait une association entre les exercices préopératoires autodéclarés et les résultats postopératoires après une chirurgie de fusion lombaire. Méthodologie : analyse multivariable rétrospective de la base de données prospective Canadian Spine Outcomes and Research Network (CSORN) composée de 2 203 patients qui avaient subi une chirurgie de fusion lombaire univertébrale non urgente. Les chercheurs ont comparé les événements indésirables et la durée du séjour hospitalier entre les patients qui déclaraient faire de l'exercice régulier (au moins deux fois par semaine) avant l'opération (« exercice régulier ¼) à ceux qui n'en faisaient pas souvent (une fois ou moins par semaine; « exercice peu fréquent ¼) et qui n'en faisaient pas du tout (« absence d'exercice ¼). Pour toutes les analyses définitives, ils ont comparé le groupe qui faisait de l'exercice régulier aux groupes combinés d'exercice peu fréquent et d'absence d'exercice. Résultats : après correction pour tenir compte des facteurs confusionnels connus, les chercheurs ont démontré que les patients du groupe faisant de l'exercice régulier présentaient moins d'événements indésirables (rapport de cotes rajusté 0,72; IC à 95 % : 0,57, 0,91; p = 0,006) et leur séjour à l'hôpital était significativement plus court (moyenne corrigée 2,2 jours par rapport à 2,5 jours, p = 0,029) que dans le groupe combiné d'exercice peu fréquent et d'absence d'exercice. Conclusions : les patients qui faisaient de l'exercice régulièrement au moins deux fois par semaine avant l'opération présentaient moins d'événements indésirables après l'opération et étaient hospitalisés beaucoup moins longtemps que ceux qui ne faisaient pas beaucoup d'exercice ou n'en faisaient pas du tout. Il faudra réaliser d'autres études pour déterminer l'efficacité d'un programme de préréadaptation ciblé.

...