Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Glycoconj J ; 38(4): 447-457, 2021 08.
Article in English | MEDLINE | ID: mdl-33956253

ABSTRACT

The capsular polysaccharide of the human pathogen Group B Streptococcus is a key virulence factor and vaccine candidate that induces protective antibodies when conjugated to carrier proteins. It consists of long polymeric chains of oligosaccharide repeating units, and each of the ten capsular serotypes described so far presents a unique chemical structure with distinct antigenic properties; therefore, broad protection against this pathogen could be achieved by a combination of ten glycoconjugates. Capsular polysaccharide biosynthesis and assembly follow a polymerase-dependent pathway that is widespread in encapsulated bacteria and is encoded by a polycistronic operon. Here we exploited the sequence similarity between the capsule operons of types V and IX to generate hybrid polysaccharides incorporating epitopes of both serotypes in a single molecule, by co-expressing their specific CpsM, O, I glycosyltransferases in a single isolate. Physicochemical and immunochemical methods confirmed that an engineered strain produced a high molecular weight chimeric polysaccharide, combining antigenic specificities of both type V and IX. By optimizing the copy number of key glycosyltransferase genes, we were able to modulate the ratio between type-specific epitopes. Finally, vaccination with chimeric glycoconjugates significantly decreased the incidence of disease in pups born from immunized mice challenged with either serotype. This study provides proof of concept for a new generation of glycoconjugate vaccines that combine the antigenic specificity of different polysaccharide variants in a single molecule, eliciting a protective immune response against multiple serotype variants.


Subject(s)
Bacterial Capsules/immunology , Polysaccharides, Bacterial/immunology , Streptococcal Vaccines/immunology , Streptococcus agalactiae/immunology , Vaccines, Combined/immunology , Animals , Antibodies, Monoclonal , Bacterial Proteins/immunology , Female , Genetic Engineering , Glycoconjugates , Humans , Immunity, Maternally-Acquired , Mice
2.
Sci Rep ; 8(1): 2593, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29416049

ABSTRACT

Group B Streptococcus (GBS) is a normal inhabitant of recto-vaginal mucosae in up to 30% of healthy women. Colonization is a major risk factor for perinatal infection which can lead to severe complications such as stillbirth and neonatal invasive disease. Intra-partum antibiotic prophylaxis in colonized women is a safe and cost-effective preventive measure against early-onset disease in the first days of life, but has no effect on late-onset manifestations or on early maternal infection. Maternal immunization with capsular polysaccharide-based vaccines shows promise for the prevention of both early-onset and late-onset neonatal infections, although ability to prevent maternal colonization and ascending infection has been less studied. Here we investigated the effect of a GBS glycoconjugate vaccine since the very early stage of maternal GBS acquisition to neonatal outcome by rodent models of vaginal colonization and ascending infection. Immunization of female mice and rats with a type III glycoconjugate reduced vaginal colonization, infection of chorioamniotic/ placental membranes and bacterial transmission to fetuses and pups. Type III specific antibodies were detected in the blood and vagina of vaccinated mothers and their offspring. The obtained data support a potential preventive effect of GBS glycoconjugate vaccines during the different stages of pregnancy.


Subject(s)
Infectious Disease Transmission, Vertical/prevention & control , Polysaccharides, Bacterial/immunology , Streptococcal Infections/prevention & control , Streptococcal Vaccines/immunology , Vagina/microbiology , Animals , Disease Models, Animal , Female , Mice , Polysaccharides, Bacterial/administration & dosage , Rats , Streptococcal Infections/microbiology , Streptococcal Vaccines/administration & dosage , Vaccination
3.
Front Microbiol ; 8: 1797, 2017.
Article in English | MEDLINE | ID: mdl-29018414

ABSTRACT

Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is widely used as a model organism for the analysis of infection biology. In this context, there is a current need to develop improved reporters for enhanced bioluminescence imaging (BLI) of the pathogen in infection models. We have developed a click beetle red luciferase (CBR-luc) based vector (pPL2CBRopt) expressing codon optimized CBR-luc under the control of a highly expressed Listerial promoter (PHELP) for L. monocytogenes and have compared this to a lux-based system expressing bacterial luciferase for BLI of the pathogen using in vitro growth experiments and in vivo models. The CBR-luc plasmid stably integrates into the L. monocytogenes chromosome and can be used to label field isolates and laboratory strains of the pathogen. Growth experiments revealed that CBR-luc labeled L. monocytogenes emits a bright signal in exponential phase that is maintained during stationary phase. In contrast, lux-labeled bacteria produced a light signal that peaked during exponential phase and was significantly reduced during stationary phase. Light from CBR-luc labeled bacteria was more efficient than the signal from lux-labeled bacteria in penetrating an artificial tissue depth assay system. A cell invasion assay using C2Bbe1 cells and a systemic murine infection model revealed that CBR-luc is suited to BLI approaches and demonstrated enhanced sensitivity relative to lux in the context of Listeria infection models. Overall, we demonstrate that this novel CBR reporter system provides efficient, red-shifted light production relative to lux and may have significant applications in the analysis of L. monocytogenes pathogenesis.

4.
PLoS Pathog ; 10(5): e1004124, 2014 May.
Article in English | MEDLINE | ID: mdl-24809621

ABSTRACT

SslE, the Secreted and surface-associated lipoprotein from Escherichia coli, has recently been associated to the M60-like extracellular zinc-metalloprotease sub-family which is implicated in glycan recognition and processing. SslE can be divided into two main variants and we recently proposed it as a potential vaccine candidate. By applying a number of in vitro bioassays and comparing wild type, knockout mutant and complemented strains, we have now demonstrated that SslE specifically contributes to degradation of mucin substrates, typically present in the intestine and bladder. Mutation of the zinc metallopeptidase motif of SslE dramatically impaired E. coli mucinase activity, confirming the specificity of the phenotype observed. Moreover, antibodies raised against variant I SslE, cloned from strain IHE3034 (SslEIHE3034), are able to inhibit translocation of E. coli strains expressing different variants through a mucin-based matrix, suggesting that SslE induces cross-reactive functional antibodies that affect the metallopeptidase activity. To test this hypothesis, we used well-established animal models and demonstrated that immunization with SslEIHE3034 significantly reduced gut, kidney and spleen colonization by strains producing variant II SslE and belonging to different pathotypes. Taken together, these data strongly support the importance of SslE in E. coli colonization of mucosal surfaces and reinforce the use of this antigen as a component of a broadly protective vaccine against pathogenic E. coli species.


Subject(s)
Antibodies, Bacterial/pharmacology , Antibody Formation , Escherichia coli Infections , Escherichia coli Proteins/immunology , Polysaccharide-Lyases/antagonists & inhibitors , Virulence Factors/immunology , Animals , Animals, Outbred Strains , Antibodies, Bacterial/metabolism , Cells, Cultured , Enteropathogenic Escherichia coli/growth & development , Enteropathogenic Escherichia coli/immunology , Enteropathogenic Escherichia coli/metabolism , Enzyme Activation/drug effects , Escherichia coli/growth & development , Escherichia coli/immunology , Escherichia coli/metabolism , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/metabolism , Female , Intestines/microbiology , Mice , Mice, Inbred CBA , Polysaccharide-Lyases/immunology , Polysaccharide-Lyases/metabolism , Virulence Factors/antagonists & inhibitors , Virulence Factors/metabolism
5.
Proc Natl Acad Sci U S A ; 107(20): 9072-7, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20439758

ABSTRACT

Extraintestinal pathogenic Escherichia coli (ExPEC) are a common cause of disease in both mammals and birds. A vaccine to prevent such infections would be desirable given the increasing antibiotic resistance of these bacteria. We have determined the genome sequence of ExPEC IHE3034 (ST95) isolated from a case of neonatal meningitis and compared this to available genome sequences of other ExPEC strains and a few nonpathogenic E. coli. We found 19 genomic islands present in the genome of IHE3034, which are absent in the nonpathogenic E. coli isolates. By using subtractive reverse vaccinology we identified 230 antigens present in ExPEC but absent (or present with low similarity) in nonpathogenic strains. Nine antigens were protective in a mouse challenge model. Some of them were also present in other pathogenic non-ExPEC strains, suggesting that a broadly protective E. coli vaccine may be possible. The gene encoding the most protective antigen was detected in most of the E. coli isolates, highly conserved in sequence and found to be exported by a type II secretion system which seems to be nonfunctional in nonpathogenic strains.


Subject(s)
Antigens, Bacterial/genetics , Escherichia coli Infections/prevention & control , Escherichia coli Vaccines/genetics , Escherichia coli/genetics , Genome, Bacterial/genetics , Meningitis, Escherichia coli/microbiology , Animals , Base Sequence , Computational Biology , Escherichia coli/immunology , Finland , Genomic Islands/genetics , Humans , Mice , Molecular Sequence Data , Secretory Pathway/genetics , Sequence Analysis, DNA
6.
Mol Cell Proteomics ; 7(3): 473-85, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17982123

ABSTRACT

Extraintestinal pathogenic Escherichia coli are the cause of a diverse spectrum of invasive infections in humans and animals, leading to urinary tract infections, meningitis, or septicemia. In this study, we focused our attention on the identification of the outer membrane proteins of the pathogen in consideration of their important biological role and of their use as potential targets for prophylactic and therapeutic interventions. To this aim, we generated a DeltatolR mutant of the pathogenic IHE3034 strain that spontaneously released a large quantity of outer membrane vesicles in the culture supernatant. The vesicles were analyzed by two-dimensional electrophoresis coupled to mass spectrometry. The analysis led to the identification of 100 proteins, most of which are localized to the outer membrane and periplasmic compartments. Interestingly based on the genome sequences available in the current public database, seven of the identified proteins appear to be specific for pathogenic E. coli and enteric bacteria and therefore are potential targets for vaccine and drug development. Finally we demonstrated that the cytolethal distending toxin, a toxin exclusively produced by pathogenic bacteria, is released in association with the vesicles, supporting the recently proposed role of bacterial vesicles in toxin delivery to host cells. Overall, our data demonstrated that outer membrane vesicles represent an ideal tool to study Gram-negative periplasm and outer membrane compartments and to shed light on new mechanisms of bacterial pathogenesis.


Subject(s)
Cell Membrane/chemistry , Escherichia coli Proteins/genetics , Escherichia coli/cytology , Escherichia coli/genetics , Membrane Proteins/genetics , Mutation/genetics , Proteomics/methods , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Cell Membrane/ultrastructure , Escherichia coli/chemistry , Escherichia coli/ultrastructure , Genome, Bacterial , Peptides , Periplasmic Proteins/chemistry , Periplasmic Proteins/metabolism , Protein Binding , Protein Subunits , Software
SELECTION OF CITATIONS
SEARCH DETAIL