Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Craniofac Surg ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270441

ABSTRACT

Inflammation after surgical incisions is related to the degree of tissue damage. Healing with low inflammation is desirable, especially in patients with compromised healing potential. This experimental study was conducted to assess the degree of inflammatory reaction and scar formation from incisions made by an ultra-polished scalpel (UPS). Two paravertebral incisions were made with a conventional scalpel (CS) and a UPS in 18 individual rats with diabetes. The fibrotic tissue (scar) area and expression levels of collagen, transforming growth factor, and matrix metalloproteinases were quantified on postoperative days 3, 7, and 30. The scar widths and areas were significantly lower in the UPS group than in the CS group. The scar widths were 64.3 ± 14.7 µm and 86.8 ± 12.1 µm in the UPS and CS groups, respectively (P = 0.03). The scar areas were 11,398 ± 1595 µm2 in the UPS group and 17,433 ± 3487 µm2 in the CS group (P = 0.014). The UPS group had less inflammation on day 3, less transforming growth factor synthesis on days 3 and 7, lower levels of matrix metalloproteinases, and less collagen synthesis on day 7 than did the CS group. The UPS achieved less local inflammation by reducing the local tissue damage in diabetic rat models, enabling better healing, and resulting in less scar formation. The UPS warrants further clinical study as it may bring beneficial outcomes for patients with impaired healing capability and patients who seek to reduce scarring.

2.
Surg Open Sci ; 4: 1-6, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33537665

ABSTRACT

BACKGROUND: Gentle and precise tissue dissection reduces collateral tissue damage and preserves its structural quality for optimizing healing. This is particularly true for peripheral nerve neurorrhaphy. Axon regeneration kinetics across the repair is dependent on the amount of intraneural fibrosis. The purpose of this study was to determine whether scalpel blade smoothness was a deterministic factor in the kinetics of postneurorrhaphy peripheral axon regeneration. METHODS: Scalpel transection of the saphenous nerve was performed in 18 female Hartley guinea pigs either by a standard #15 stainless steel scalpel blade or a highly polished version of the same blade. Compound nerve action potential recordings and histochemical assay of neurofilament density proximal and 1 cm distal to the site of nerve transection were quantified postneurorrhaphy at postoperative weeks 5, 9, and 12. RESULTS: There was no action potential transmission observed in the distal axons immediately after neurorrhaphy. A substantial acceleration of axonal conduction recovery was observed in nerves transected with polished scalpel blades observed by high compound nerve action potential amplitudes at postneurorrhaphy weeks 5 and 9 (P < .05). In addition, an increased recovery of intra-axonal neurofilament density in nerves transected with polished scalpel blades was observed by postoperative week 5 (P < .05). CONCLUSION: The quality of the scalpel blade is an important determinate of postsurgical healing. Gentle handling of tissue matters.

SELECTION OF CITATIONS
SEARCH DETAIL
...