Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Heart Assoc ; 13(8): e034048, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38591341

ABSTRACT

BACKGROUND: We aimed to describe the frequency and yield of genetic testing in supravalvar aortic stenosis (SVAS) following negative evaluation for Williams-Beuren syndrome (WS). METHODS AND RESULTS: This retrospective cohort study included patients with SVAS at our institution who had a negative evaluation for WS from May 1991 to September 2021. SVAS was defined as (1) peak supravalvar velocity of ≥2 meters/second, (2) sinotubular junction or ascending aortic Z score <-2.0, or (3) sinotubular junction Z score <-1.5 with family history of SVAS. Patients with complex congenital heart disease, aortic valve disease as the primary condition, or only postoperative SVAS were excluded. Genetic testing and diagnoses were reported. Of 162 patients who were WS negative meeting inclusion criteria, 61 had genetic testing results available (38%). Chromosomal microarray had been performed in 44 of 61 and was nondiagnostic for non-WS causes of SVAS. Sequencing of 1 or more genes was performed in 47 of 61. Of these, 39 of 47 underwent ELN sequencing, 20 of 39 (51%) of whom had a diagnostic variant. Other diagnoses made by gene sequencing were Noonan syndrome (3 PTPN11, 1 RIT1), Alagille syndrome (3 JAG1), neurofibromatosis (1 NF1), and homozygous familial hypercholesterolemia (1 LDLR1). Overall, sequencing was diagnostic in 29 of 47 (62%). CONCLUSIONS: When WS is excluded, gene sequencing for SVAS is high yield, with the highest yield for the ELN gene. Therefore, we recommend gene sequencing using a multigene panel or exome analysis. Hypercholesterolemia can also be considered in individuals bearing the stigmata of this disease.


Subject(s)
Aortic Stenosis, Supravalvular , Williams Syndrome , Humans , Williams Syndrome/diagnosis , Williams Syndrome/genetics , Williams Syndrome/surgery , Aortic Stenosis, Supravalvular/diagnosis , Aortic Stenosis, Supravalvular/genetics , Aortic Stenosis, Supravalvular/congenital , Retrospective Studies , Genetic Testing , Aorta
2.
J Phys Chem B ; 123(42): 8931-8938, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31553603

ABSTRACT

A combination of surface tension, surface-specific vibrational spectroscopy, and differential scanning calorimetry experiments was performed to examine the ability of lipid films to enrich interfacial organic content by attracting soluble, neutral saccharides from bulk aqueous solution. This "cooperative adsorption" hypothesis has been proposed as a possible source of the high organic fractions found in sea spray aerosols and is believed to be responsible for cryoprotection in some organisms. Experiments described in this work show that the neutral disaccharide trehalose (Tre) is drawn to lipid films composed of dipalmitoylphosphatidylcholine (DPPC), a saturated lipid that is a major component of most eukaryotic cells. The effects of Tre on DPPC monolayer structure and organization were tested with tightly packed monolayers in the two-dimensional solid phase (40 Å2/molecule) and more expanded monolayers in the two-dimensional liquid condensed phase (55 Å2/molecule). Surface tension data show that DPPC monolayer behavior remains largely unchanged until Tre bulk concentrations are sufficiently high (≥50 mM). In contrast, surface-specific vibrational sum frequency spectra show that when Tre bulk concentrations are ≥10 mM, DPPC monolayers in their liquid condensed state (55 Å2/molecule) became more ordered, implying relatively strong noncovalent interactions between the two species. Tre also induces changes in DPPC bilayer behavior as evidenced by a gel-to-liquid crystalline phase transition temperature that increases with increasing Tre concentration. This result suggests that Tre associates with the DPPC headgroups in very specific ways leading to partial dehydration. Together, these results support the cooperative adsorption mechanism under some circumstances, namely, that there is a minimum aqueous phase Tre concentration required to induce observable structural changes in a lipid monolayer and that these effects are most pronounced with DPPC monolayers in their liquid condensed state compared to those of a tightly packed two-dimensional solid.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Air , Nonlinear Optical Microscopy , Trehalose/chemistry , Water , Adsorption , Calorimetry, Differential Scanning
3.
J Phys Chem A ; 123(26): 5621-5632, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31244118

ABSTRACT

Surface tension, surface-specific vibrational spectroscopy and differential scanning calorimetry measurements were all used to test cooperative adsorption of glucuronic acid (GU) to DPPC monolayers adsorbed to the aqueous/vapor interface. Experiments were performed using GU solutions prepared in Millipore water and in carbonate/bicarbonate solutions buffered to a pH of 9.0. The effects of GU on DPPC monolayer structure and organization were carried out with tightly packed monolayers (40 Å2/DPPC) and monolayers in their liquid condensed phase (55 Å2/molecule). Surface tension data show that GU concentrations of 50 mM lead to expanded DPPC monolayers with diminished surface tensions (or higher surface pressures) at a given DPPC coverage relative to monolayers on pure water. With unbuffered solutions, GU induces significant ordering within liquid condensed monolayers although the effects of GU on tightly packed DPPC monolayers are less pronounced. GU also induces a second, higher melting temperature in DPPC vesicles implying that GU (at sufficiently high concentrations) strengthens lipid-lipid cohesion, possibly by replacing water solvating the DPPC headgroups. Together, these observations all support a cooperative adsorption mechanism. In buffer solutions, the effects of dissolved GU on DPPC structure and organization are muted. Only at sufficiently high GU concentrations (when the solution's buffering capacity has been exceeded) do the data again show evidence of cooperative adsorption. These findings place limits on cooperative adsorption's ability to enrich interfacial organic content in alkaline environmental systems such as oceans.

SELECTION OF CITATIONS
SEARCH DETAIL