ABSTRACT
Resistance to drought stress is fundamental to plant survival and development. Abscisic acid (ABA) is one of the major hormones involved in different types of abiotic and biotic stress responses. ABA intracellular signaling has been extensively explored in Arabidopsis thaliana and occurs via a phosphorylation cascade mediated by three related protein kinases, denominated SnRK2s (SNF1-related protein kinases). However, the role of ABA signaling and the biochemistry of SnRK2 in crop plants remains underexplored. Considering the importance of the ABA hormone in abiotic stress tolerance, here we investigated the regulatory mechanism of sugarcane SnRK2s-known as stress/ABA-activated protein kinases (SAPKs). The crystal structure of ScSAPK10 revealed the characteristic SnRK2 family architecture, in which the regulatory SnRK2 box interacts with the kinase domain αC helix. To study sugarcane SnRK2 regulation, we produced a series of mutants for the protein regulatory domains SnRK2 box and ABA box. Mutations in ScSAPK8 SnRK2 box aimed at perturbing its interaction with the protein kinase domain reduced protein kinase activity in vitro. On the other hand, mutations to ScSAPK ABA box did not impact protein kinase activity but did alter the protein autophosphorylation pattern. Taken together, our results demonstrate that both SnRK2 and ABA boxes might play a role in sugarcane SnRK2 function.
ABSTRACT
Proteostasis is dependent on the Hsp70/Hsp90 system (the two chaperones and their co-chaperones). Of these, Hop (Hsp70/Hsp90 organizing protein), also known as Sti1, forms an important scaffold to simultaneously binding to both Hsp70 and Hsp90. Hop/Sti1 has been implicated in several disease states, for instance cancer and transmissible spongiform encephalopathies. Therefore, human and yeast homologous have been better studied and information on plant homologous is still limited, even though plants are continuously exposed to environmental stress. Particularly important is the study of crops that are relevant for agriculture, such as Sorghum bicolor, a C4 grass that is among the five most important cereals and is considered as a bioenergy feedstock. To increase the knowledge on plant chaperones, the hop putative gene for Sorghum bicolor was cloned and the biophysical and structural characterization of the protein was done by cross-linking coupled to mass spectroscopy, small angle X-ray scattering and structural modeling. Additionally, the binding to a peptide EEVD motif, which is present in both Hsp70 and Hsp90, was studied by isothermal titration calorimetry and hydrogen/deuterium exchange and the interaction pattern structurally modeled. The results indicate SbHop as a highly flexible, mainly alpha-helical monomer consisting of nine tetratricopeptide repeat domains, of which one confers high affinity binding to Hsp90 through a conserved carboxylate clamp. Moreover, the present insights into the conserved interactions formed between Hop and Hsp90 can help to design strategies for potential therapeutic approaches for the diseases in which Hop has been implicated.