Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(45): 28183-28190, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33109722

ABSTRACT

The idea that tropical forest and savanna are alternative states is crucial to how we manage these biomes and predict their future under global change. Large-scale empirical evidence for alternative stable states is limited, however, and comes mostly from the multimodal distribution of structural aspects of vegetation. These approaches have been criticized, as structure alone cannot separate out wetter savannas from drier forests for example, and there are also technical challenges to mapping vegetation structure in unbiased ways. Here, we develop an alternative approach to delimit the climatic envelope of the two biomes in Africa using tree species lists gathered for a large number of forest and savanna sites distributed across the continent. Our analyses confirm extensive climatic overlap of forest and savanna, supporting the alternative stable states hypothesis for Africa, and this result is corroborated by paleoecological evidence. Further, we find the two biomes to have highly divergent tree species compositions and to represent alternative compositional states. This allowed us to classify tree species as forest vs. savanna specialists, with some generalist species that span both biomes. In conjunction with georeferenced herbarium records, we mapped the forest and savanna distributions across Africa and quantified their environmental limits, which are primarily related to precipitation and seasonality, with a secondary contribution of fire. These results are important for the ongoing efforts to restore African ecosystems, which depend on accurate biome maps to set appropriate targets for the restored states but also provide empirical evidence for broad-scale bistability.


Subject(s)
Climate , Ecosystem , Forests , Grassland , Africa , Fires , Rain , Seasons , Trees , Tropical Climate
2.
J Math Biol ; 70(1-2): 329-41, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24570348

ABSTRACT

The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.


Subject(s)
Fires , Forests , Grassland , Models, Biological , Computer Simulation , Ecosystem , Mathematical Concepts , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...