ABSTRACT
AIMS: Diminazene aceturate, a putative ACE2 activator, is susceptible to cleavage resulting in the formation of p-aminobenzamidine (PAB). This study aimed to investigate the effects of PAB in addressing cardiovascular dysfunctions in spontaneously hypertensive rats (SHR). MAIN METHODS: Acute effects of PAB on mean arterial pressure (MAP), heart rate (HR), and aortic (AVC) and mesenteric vascular conductance (MVC) were evaluated in anesthetized SHR. Isolated aortic rings and the Langendorff technique were used to investigate the acute and chronic effects of PAB in the artery and heart. Chronic treatment with PAB (1 mg/kg, gavage) was carried out for 60 days. During this period, systolic blood pressure (SBP) and HR were measured by tail-cuff plethysmography. After the treatment, the left ventricle was collected for histology analyses, western blotting, and ACE2 activity. KEY FINDINGS: Bolus infusion of PAB acutely reduced MAP and increased both AVC and MVC in SHR. Additionally, PAB induced coronary and aorta vasodilation in isolated organs from Wistar and SHR in an endothelial-dependent manner. The chronic PAB treatment in SHR significantly attenuated the increase of SBP and improved the aorta vasorelaxation induced by acetylcholine and bradykinin-induced coronary vasodilation. In addition, chronic treatment with PAB attenuated the cardiomyocyte hypertrophy and extracellular matrix deposition in hearts from SHR. PAB did not alter the protein expression of the AT1, AT2, Mas, ACE, ACE2, or ACE2 activity. SIGNIFICANCE: PAB induced beneficial effects on cardiovascular dysfunctions induced by hypertension, suggesting that this molecule could be used in the development of new drugs for the treatment of cardiovascular diseases.
Subject(s)
Angiotensin-Converting Enzyme 2 , Hypertension , Animals , Benzamidines , Blood Pressure , Hypertension/complications , Hypertension/drug therapy , Rats , Rats, Inbred SHR , Rats, Wistar , VasodilationABSTRACT
BACKGROUND AND AIMS: Lysophosphatidylcholine (LPC) - a main component of oxidized LDL - is involved in endothelial dysfunction that precedes atherosclerosis, with an increased superoxide anions and a reduced NO production via endothelial NO synthase (eNOS) uncoupling. However, there is no evidence about the mechanisms involved in neuronal NOS (nNOS) uncoupling. Extracellular signal-regulated kinase (ERK) is related to the control of NO production and inflammatory gene transcription activation in atherosclerosis. Our aim was to investigate the role of nNOS/ERK1/2 pathway on endothelial dysfunction induced by LPC, in mouse aorta and human endothelial cells. METHODS: Thoracic aorta from wild type mice was used to perform vascular reactivity studies in the presence or absence of LPC. Human endothelial cells were used to investigate the effect of LPC on expression of nNOS and his products NO and H2O2. RESULTS: LPC reduced acetylcholine (ACh)-induced vasodilation in mouse aorta (EmaxCT/LPC = â¼95 ± 2/62 ± 3%, p = 0.0004) and increased phenylephrine-induced vasoconstriction (EmaxCT/LPC = â¼4 ± 0,1/6 ± 0,1 mN/mm, p = 0.0002), with a reduction in NO (fluorescence intensityCT/LPC = 91 ± 3/62±2 × 103, p = 0.0002) and H2O2 (fluorescence intensityCT/LPC = â¼16 ± 0,8/10 ± 0,7 × 103, p = 0.0041) production evocated by ACh. An inhibition of nNOS by TRIM (EmaxCT/CT+TRIM = â¼93 ± 1/43 ± 3%, p = 0,0048; EmaxLPC/LPC+TRIM = â¼62 ± 3/65 ± 3%) or H2O2 degradation by catalase (EmaxCT/CT+cat = â¼93 ± 1/46 ± 2%, p < 0,001; EmaxLPC/LPC+cat = â¼62,8 ± 3,2/60,5 ± 4,7%) reduced the relaxation in the control but not in LPC group. PD98059, an ERK1/2 inhibitor, abolished the increase in vasoconstriction in LPC-treated vessels (EmaxLPC/LPC+PD = â¼6 ± 0,1/3 ± 0,1 mN/mm, p = 0.0001). LPC also reduced the dimer/monomer proportion and increased nNOSser852 phosphorylation. CONCLUSIONS: LPC induced nNOS uncoupling and nNOSSer852 phosphorylation, reduced NO and H2O2 production and improved superoxide production by modulating ERK1/2 activity in human and murine endothelial cells.
Subject(s)
Aorta, Thoracic/drug effects , Endothelial Cells/drug effects , Lysophosphatidylcholines/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Nitric Oxide Synthase Type I/metabolism , Vasoconstriction/drug effects , Vasodilation/drug effects , Animals , Cell Line , Dose-Response Relationship, Drug , Endothelial Cells/enzymology , Enzyme Activation , Hydrogen Peroxide/metabolism , In Vitro Techniques , Male , Mice, Inbred C57BL , Nitric Oxide/metabolism , Phosphorylation , Signal Transduction/drug effects , Superoxides/metabolism , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacologyABSTRACT
AIMS: Wall shear stress differentially regulates the arginase pathway in carotid arteries perfused ex vivo. Specific patterns of wall shear stress can locally determine atherosclerotic plaque size and composition in vivo. The present work investigates the effects of arginase inhibition on shear stress induced plaque composition. METHODS AND RESULTS: Carotid arteries of apolipoprotein E deficient mice were exposed to high (HSS), low (LSS) and oscillatory (OSS) shear stress conditions by the placement of a local shear stress modifier device for 9 weeks with or without the administration of the arginase inhibitor N-ω-Hydroxy-nor-L-arginine (nor-Noha) (10 mg/kg, i.p., 5 days/week). Carotid arginase activity was measured by colorimetric determination of urea. Atherosclerotic plaque size and composition, arginase expression and cellular localization were assessed by immunohistochemistry. Arginase activity was significantly increased in both LSS and OSS regions as compared to HSS. In the lesions, arginase II isoform co-localized preferentially with EC. Inhibition of arginase by nor-Noha decreased arginase activity and reduced plaque size in both LSS and OSS regions. Arginase inhibition affected mainly the composition of plaques developed in LSS regions by decreasing the total vascular ROS, the number of macrophages, apoptosis rate, lipid and collagen contents. CONCLUSIONS: Arginase activity is modulated by patterns of wall shear stress in vivo. Chronic inhibition of vascular arginase decreased the size of atherosclerotic lesions in both OSS and LSS regions, whereas changes on plaque composition were more pronounced in plaques induced by LSS. We identified wall shear stress as a key biomechanical regulator of arginase during plaque formation and stability.