Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Environ Microbiol ; 88(1): e0153521, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34669434

ABSTRACT

The exopolysaccharide galactosaminogalactan (GAG) plays an important role in mediating adhesion, biofilm formation, and virulence in the pathogenic fungus Aspergillus fumigatus. Previous work showed that in A. fumigatus, the Lim domain-binding protein PtaB can form a complex with the sequence-specific transcription factor SomA for regulating GAG biosynthesis, biofilm formation, and asexual development. However, transcriptional coactivators required for biofilm formation in A. fumigatus remain uncharacterized. In this study, Spt20, an orthologue of the subunit of the Saccharomyces cerevisiae transcriptional coactivator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, was identified as a regulator of biofilm formation and asexual development in A. fumigatus. The loss of spt20 caused severe defects in the GAG biosynthesis, biofilm formation, conidiation, and virulence of A. fumigatus. RNA sequence data demonstrated that Spt20 positively regulates the expression of the GAG biosynthesis genes uge3 and agd3, the developmental regulator medA, and genes involved in the conidiation pathway. Moreover, more than 10 subunits of the SAGA complex (known from yeast) could be immunoprecipitated with Spt20, suggesting that Spt20 acts as a structural subunit of the SAGA complex. Furthermore, distinct modules of SAGA regulate GAG biosynthesis, biofilm formation, and asexual development in A. fumigatus to various degrees. In summary, the novel biofilm regulator Spt20 is reported, which plays a crucial role in the regulation of fungal asexual development, GAG biosynthesis, and virulence in A. fumigatus. These findings expand knowledge on the regulatory circuits of the SAGA complex relevant for the biofilm formation and asexual development of A. fumigatus. IMPORTANCE Eukaryotic transcription is regulated by a large number of proteins, ranging from sequence-specific DNA-binding factors to transcriptional coactivators (chromatin regulators and the general transcription machinery) and their regulators. Previous research indicated that the sequence-specific complex SomA/PtaB regulates the biofilm formation and asexual development of Aspergillus fumigatus. However, transcriptional coactivators working with sequence-specific transcription factors to regulate A. fumigatus biofilm formation remain uncharacterized. In this study, Spt20, an orthologue of the subunit of the Saccharomyces cerevisiae Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, was identified as a novel regulator of biofilm formation and asexual development in A. fumigatus. The loss of spt20 caused severe defects in galactosaminogalactan (GAG) production, conidiation, and virulence. Moreover, nearly all modules of the SAGA complex were required for the biofilm formation and asexual development of A. fumigatus. These results establish the SAGA complex as a transcriptional coactivator required for the biofilm formation and asexual development of A. fumigatus.


Subject(s)
Aspergillus fumigatus , Biofilms , Fungal Proteins , Aspergillus fumigatus/genetics , Fungal Proteins/genetics , Virulence
2.
mBio ; 11(1)2020 02 04.
Article in English | MEDLINE | ID: mdl-32019801

ABSTRACT

Inhalation of conidia of the opportunistic mold Aspergillus fumigatus by immunocompromised hosts can lead to invasive pulmonary disease. Inhaled conidia that escape immune defenses germinate to form filamentous hyphae that invade lung tissues. Conidiation rarely occurs during invasive infection of the human host, allowing the bulk of fungal energy to be directed toward vegetative growth. We hypothesized that forced induction of conidiation during infection can suppress A. fumigatus vegetative growth, impairing the ability of this organism to cause disease. To study the effects of conidiation pathway dysregulation on A. fumigatus virulence, a key transcriptional regulator of conidiation (brlA) was expressed under the control of a doxycycline-inducible promoter. Time- and dose-dependent brlA overexpression was observed in response to doxycycline both in vitro and in vivo. Exposure of the inducible brlA overexpression strain to low doses of doxycycline under vegetative growth conditions in vitro induced conidiation, whereas high doses arrested growth. Overexpression of brlA attenuated A. fumigatus virulence in both an invertebrate and mouse model of invasive aspergillosis. RNA sequencing studies and phenotypic analysis revealed that brlA overexpression results in altered cell signaling, amino acid, and carbohydrate metabolism, including a marked upregulation of trehalose biosynthesis and a downregulation in the biosynthesis of the polysaccharide virulence factor galactosaminogalactan. This proof of concept study demonstrates that activation of the conidiation pathway in A. fumigatus can reduce virulence and suggests that brlA-inducing small molecules may hold promise as a new class of therapeutics for A. fumigatus infection.IMPORTANCE The mold Aspergillus fumigatus reproduces by the production of airborne spores (conidia), a process termed conidiation. In immunocompromised individuals, inhaled A. fumigatus conidia can germinate and form filaments that penetrate and damage lung tissues; however, conidiation does not occur during invasive infection. In this study, we demonstrate that forced activation of conidiation in filaments of A. fumigatus can arrest their growth and impair the ability of this fungus to cause disease in both an insect and a mouse model of invasive infection. Activation of conidiation was linked to profound changes in A. fumigatus metabolism, including a shift away from the synthesis of polysaccharides required for cell wall structure and virulence in favor of carbohydrates used for energy storage and stress resistance. Collectively, these findings suggest that activation of the conidiation pathway may be a promising approach for the development of new agents to prevent or treat A. fumigatus infection.


Subject(s)
Aspergillus fumigatus/genetics , Aspergillus fumigatus/pathogenicity , Fungal Proteins/genetics , Spores, Fungal/drug effects , Transcription Factors/genetics , Animals , Aspergillosis/microbiology , Aspergillus fumigatus/drug effects , Doxycycline/pharmacology , Female , Larva/microbiology , Mice , Mice, Inbred BALB C , Moths/microbiology , Proof of Concept Study , Spores, Fungal/genetics , Virulence , Virulence Factors
SELECTION OF CITATIONS
SEARCH DETAIL