Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Conserv Biol ; 38(2): e14190, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37768181

ABSTRACT

The fundamental goal of a rare plant translocation is to create self-sustaining populations with the evolutionary resilience to persist in the long term. Yet, most plant translocation syntheses focus on a few factors influencing short-term benchmarks of success (e.g., survival and reproduction). Short-term benchmarks can be misleading when trying to infer future growth and viability because the factors that promote establishment may differ from those required for long-term persistence. We assembled a large (n = 275) and broadly representative data set of well-documented and monitored (7.9 years on average) at-risk plant translocations to identify the most important site attributes, management techniques, and species' traits for six life-cycle benchmarks and population metrics of translocation success. We used the random forest algorithm to quantify the relative importance of 29 predictor variables for each metric of success. Drivers of translocation outcomes varied across time frames and success metrics. Management techniques had the greatest relative influence on the attainment of life-cycle benchmarks and short-term population trends, whereas site attributes and species' traits were more important for population persistence and long-term trends. Specifically, large founder sizes increased the potential for reproduction and recruitment into the next generation, whereas declining habitat quality and the outplanting of species with low seed production led to increased extinction risks and a reduction in potential reproductive output in the long-term, respectively. We also detected novel interactions between some of the most important drivers, such as an increased probability of next-generation recruitment in species with greater seed production rates, but only when coupled with large founder sizes. Because most significant barriers to plant translocation success can be overcome by improving techniques or resolving site-level issues through early intervention and management, we suggest that by combining long-term monitoring with adaptive management, translocation programs can enhance the prospects of achieving long-term success.


Identificación de pronosticadores del éxito de reubicación en especies raras de plantas Resumen El objetivo fundamental de la reubicación de plantas raras es la creación de poblaciones autosuficientes con resiliencia evolutiva que persistan a la larga. De todas maneras, la mayoría de las síntesis de estas reubicaciones se enfocan en unos cuantos factores que influyen sobre los parámetros a corto plazo del éxito (supervivencia y reproducción). Los parámetros a corto plazo pueden ser engañosos si se intenta inferir el crecimiento y la viabilidad en el futuro ya que los factores que promueven el establecimiento pueden diferir de aquellos requeridos para la persistencia a largo plazo. Ensamblamos un conjunto grande de datos representativos en general (n = 275) de las reubicaciones de plantas en riesgo bien documentadas y monitoreadas (7.9 años en promedio) para identificar los atributos de sitio más importantes, las técnicas de manejo y los rasgos de las especies para seis parámetros de ciclos de vida y medidas poblacionales del éxito de reubicación. Usamos el algoritmo de bosque aleatorio para cuantificar la importancia relativa de las 29 variables de pronosticadores para cada medida del éxito. Los factores en los resultados de las reubicaciones variaron con los marcos temporales y las medidas de éxito. Las técnicas de manejo tuvieron la mayor influencia relativa sobre la obtención de parámetros de ciclos de vida y tendencias poblacionales a corto plazo, mientras que los atributos de sitio y los rasgos de la especie fueron más importantes para la persistencia poblacional y las tendencias a largo plazo. En específico, las grandes cantidades de fundadores incrementaron el potencial de reproducción y reclutamiento de la siguiente generación, mientras que la declinación de la calidad del hábitat incrementó el riesgo de extinción y el trasplante de especies con baja producción de semillas redujo el rendimiento del potencial reproductivo a la larga. También detectamos interacciones novedosas entre algunos de los factores más importantes, como el aumento en la probabilidad del reclutamiento en la siguiente generación en especies con tasas mayores de producción de semillas, pero sólo cuando se emparejó con grandes cantidades de fundadores. Ya que las barreras más significativas para el éxito de la reubicación de plantas pueden superarse al mejorar las técnicas o resolver los temas a nivel de sitio por medio de un manejo y una intervención temprana, sugerimos que con la combinación del monitoreo a largo plazo con el manejo adaptativo los programas de reubicación pueden aumentar el prospecto de lograr el éxito a largo plazo.


Subject(s)
Conservation of Natural Resources , Plants , Conservation of Natural Resources/methods , Reproduction , Seeds , Ecosystem
2.
Oecologia ; 174(3): 817-26, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24141380

ABSTRACT

One of the most commonly cited hypotheses explaining invasion success is the enemy release hypothesis (ERH), which maintains that populations are regulated by coevolved natural enemies where they are native but are relieved of this pressure in the new range. However, the role of resident enemies in plant invasion remains unresolved. We conducted a field experiment to test predictions of the ERH empirically using a system of native, introduced invasive, and introduced non-invasive Eugenia congeners in south Florida. Such experiments are rarely undertaken but are particularly informative in tests of the ERH, as they simultaneously identify factors allowing invasive species to replace natives and traits determining why most introduced species are unsuccessful invaders. We excluded insect herbivores from seedlings of Eugenia congeners where the native and invasive Eugenia co-occur, and compared how herbivore exclusion affected foliar damage, growth, and survival. We found no evidence to support the ERH in this system, instead finding that the invasive E. uniflora sustained significantly more damage than the native and introduced species. Interestingly, E. uniflora performed better than, or as well as, its congeners in terms of growth and survival, in spite of higher damage incidence. Further, although herbivore exclusion positively influenced Eugenia seedling survival, there were few differences among species and no patterns in regard to invasion status or origin. We conclude that the ability of E. uniflora to outperform its native and introduced non-invasive congeners, and not release from insect herbivores, contributes to its success as an invader in Florida.


Subject(s)
Herbivory , Introduced Species , Seedlings/growth & development , Syzygium/growth & development , Animals , Florida , Insecta
3.
New Phytol ; 200(3): 767-777, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23869799

ABSTRACT

Disturbance affects most terrestrial ecosystems and has the potential to shape their responses to chronic environmental change. Scrub-oak vegetation regenerating from fire disturbance in subtropical Florida was exposed to experimentally elevated carbon dioxide (CO2) concentration (+350 µl l(-1)) using open-top chambers for 11 yr, punctuated by hurricane disturbance in year 8. Here, we report the effects of elevated CO2 on aboveground and belowground net primary productivity (NPP) and nitrogen (N) cycling during this experiment. The stimulation of NPP and N uptake by elevated CO2 peaked within 2 yr after disturbance by fire and hurricane, when soil nutrient availability was high. The stimulation subsequently declined and disappeared, coincident with low soil nutrient availability and with a CO2 -induced reduction in the N concentration of oak stems. These findings show that strong growth responses to elevated CO2 can be transient, are consistent with a progressively limited response to elevated CO2 interrupted by disturbance, and illustrate the importance of biogeochemical responses to extreme events in modulating ecosystem responses to global environmental change.


Subject(s)
Carbon Dioxide/metabolism , Cyclonic Storms , Ecosystem , Fires , Nitrogen/metabolism , Quercus/growth & development , Soil/chemistry , Atmosphere , Biomass , Florida , Nitrogen Cycle , Plant Stems/metabolism , Quercus/metabolism , Trees/growth & development , Trees/metabolism
4.
New Phytol ; 200(3): 788-795, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23638943

ABSTRACT

Increasing atmospheric CO2 concentrations alter leaf physiology, with effects that cascade to communities and ecosystems. Yet, responses over cycles of disturbance and recovery are not well known, because most experiments span limited ecological time. We examined the effects of CO2 on root growth, herbivory and arthropod biodiversity in a woodland from 1996 to 2006, and the legacy of CO2 enrichment on these processes during the year after the CO2 treatment ceased. We used minirhizotrons to study root growth, leaf censuses to study herbivory and pitfall traps to determine the effects of elevated CO2 on arthropod biodiversity. Elevated CO2 increased fine root biomass, but decreased foliar nitrogen and herbivory on all plant species. Insect biodiversity was unchanged in elevated CO2. Legacy effects of elevated CO2 disappeared quickly as fine root growth, foliar nitrogen and herbivory levels recovered in the next growing season following the cessation of elevated CO2. Although the effects of elevated CO2 cascade through plants to herbivores, they do not reach other trophic levels, and biodiversity remains unchanged. The legacy of 10 yr of elevated CO2 on plant-herbivore interactions in this system appear to be minimal, indicating that the effects of elevated CO2 may not accumulate over cycles of disturbance and recovery.


Subject(s)
Carbon Dioxide/metabolism , Ecosystem , Herbivory , Insecta , Plant Roots/growth & development , Quercus/physiology , Trees/physiology , Animals , Atmosphere , Biodiversity , Biomass , Nitrogen/metabolism , Plant Leaves/metabolism , Quercus/growth & development , Quercus/metabolism , Seasons , Trees/growth & development , Trees/metabolism
5.
Ecology ; 93(8): 1902-11, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22928418

ABSTRACT

The enemy release hypothesis (ERH) is often cited to explain why some plants successfully invade natural communities while others do not. This hypothesis maintains that plant populations are regulated by coevolved enemies in their native range but are relieved of this pressure where their enemies have not been co-introduced. Some studies have shown that invasive plants sustain lower levels of herbivore damage when compared to native species, but how damage affects fitness and population dynamics remains unclear. We used a system of co-occurring native and invasive Eugenia congeners in south Florida (USA) to experimentally test the ERH, addressing deficiencies in our understanding of the role of natural enemies in plant invasion at the population level. Insecticide was used to experimentally exclude insect herbivores from invasive Eugenia uniflora and its native co-occurring congeners in the field for two years. Herbivore damage, plant growth, survival, and population growth rates for the three species were then compared for control and insecticide-treated plants. Our results contradict the ERH, indicating that E. uniflora sustains more herbivore damage than its native congeners and that this damage negatively impacts stem height, survival, and population growth. In addition, most damage to E. uniflora, a native of Brazil, is carried out by Myllocerus undatus, a recently introduced weevil from Sri Lanka, and M. undatus attacks a significantly greater proportion of E. uniflora leaves than those of its native congeners. This interaction is particularly interesting because M. undatus and E. uniflora share no coevolutionary history, having arisen on two separate continents and come into contact on a third. Our study is the first to document negative population-level effects for an invasive plant as a result of the introduction of a novel herbivore. Such inhibitory interactions are likely to become more prevalent as suites of previously noninteracting species continue to accumulate and new communities assemble worldwide.


Subject(s)
Ecosystem , Herbivory/physiology , Introduced Species , Pest Control, Biological/methods , Syzygium/physiology , Weevils/physiology , Animals , Brazil , Florida , Plant Leaves
6.
Conserv Biol ; 26(4): 586-92, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22809350

ABSTRACT

Some species have insufficient defenses against climate change, emerging infectious diseases, and non-native species because they have not been exposed to these factors over their evolutionary history, and this can decrease their likelihood of persistence. Captive breeding programs are sometimes used to reintroduce individuals back into the wild; however, successful captive breeding and reintroduction can be difficult because species or populations often cannot coexist with non-native pathogens and herbivores without artificial selection. In captive breeding programs, breeders can select for host defenses that prevent or reduce pathogen or herbivore burden (i.e., resistance) or traits that limit the effects of parasitism or herbivory on host fitness (i.e., tolerance). We propose that selection for host tolerance may enhance the success of reintroduction or translocation because tolerant hosts generally have neutral effects on introduced pathogens and herbivores. The release of resistant hosts would have detrimental effects on their natural enemies, promoting rapid evolution to circumvent the host resistance that may reduce the long-term probability of persistence of the reintroduced or translocated species. We examined 2 case studies, one on the pathogenic amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]) and the other on the herbivorous cactus moth (Cactoblastis cactorum) in the United States, where it is not native. In each case study, we provide recommendations for how captive breeders and managers could go about selecting for host tolerance. Selecting for tolerance may offer a promising tool to rescue hosts species from invasive natural enemies as well as new natural enemies associated with climate change-induced range shifts.


Subject(s)
Conservation of Natural Resources , Disease Resistance , Herbivory , Introduced Species , Selection, Genetic , Amphibians/genetics , Amphibians/microbiology , Animals , Cactaceae/genetics , Cactaceae/physiology , Chytridiomycota/physiology , Food Chain , Host-Pathogen Interactions , Moths/physiology
7.
Environ Entomol ; 39(6): 1884-92, 2010 Dec.
Article in English | MEDLINE | ID: mdl-22182554

ABSTRACT

Cactoblastis cactorum Berg (Lepidoptera: Pyralidae), the cactus moth, is a well-known biological control agent of prickly pear cactus (Cactaceae: Opuntia Miller). The arrival of the moth in Florida and its subsequent spread through the southeastern United States poses a threat to opuntioid diversity in North America. Of particular concern are the ecological and economic impacts the moth could have in the southwestern United States and Mexico, where both native and cultivated Opuntia species are important resources. It is unknown which species would best support larval development if the moth were to spread further westward in North America. This study aimed to determine if ovipositing females demonstrate preferences for any of 14 common opuntioids native to or naturalized in Mexico and the southwestern United States; which of these opuntioids best support larval development; and if oviposition preference correlates with larval performance, as predicted by simple adaptive models. Results from a field experiment showed that female moths preferred O. engelmannii Salm-Dyck ex Engelmann variety linguiformis (Griffiths) Parfitt and Pinkava and O. engelmannii variety engelmannii for oviposition. A generalized linear model showed number of cladodes and degree of spininess to be significant predictors of oviposition activity. Results from a no-choice larval survival experiment showed Consolea rubescens (Salm-Dyck ex de Candolle.) Lemaire and O. streptacantha Lemaire to be the best hosts. Epidermal toughness was a significant predictor of most larval fitness parameters. In general, oviposition preference was not correlated with larval performance. A lack of co-evolutionary history between C. cactorum and North American opuntioid species may help explain this disconnect.


Subject(s)
Host Specificity , Introduced Species , Moths/physiology , Opuntia/parasitology , Oviposition , Animals , Female , Larva/physiology , Male , North America
8.
Ecology ; 87(10): 2673-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17089675

ABSTRACT

It has been suggested, but rarely tested, that the relative strength of top-down and bottom-up factors in communities varies along an environmental stress gradient. We compared the strength of bottom-up and top-down effects on the densities of insect herbivores along a range of sites of different salinities in west-central Florida. We used a 2 x 2 factorial design with plots divided into four treatments: (1) bottom-up manipulation, where fertilizer was applied to increase plant quality; (2) top-down manipulation, where sticky traps were used to reduce the effects of natural enemies (parasitoids); (3) bottom-up and top-down manipulation, where fertilizer was applied and sticky traps were used; and (4) control plots. These plots were established along a range of salinities among seven different sites containing the salt marsh plant Borrichia frutescens. In each plot, we determined the parasitism levels and abundances of the sap sucker Pissonotus quadripustulatus, the gall maker Asphondylia borrichiae, and the lepidopteran stem borer Argyresthia spp. Gall density, Pissonotus density, and stem borer density were significantly higher in lower salinity sites, suggesting a strong effect of environmental stress. There was a significant increase of galls and Pissonotus and a marginally significant increase of bored stems on fertilized plots but not on trapped plots. There was a significant interaction of site and fertilizer on gall parasitism. There were no interactions of either treatment with salinity on herbivore densities. The general lack of interaction between salinity level and other treatments on herbivore densities contrasts with our previous result where treatment effects did vary with salinity level on a large experimentally generated salinity gradient at one site. Thus, the results of the present paper suggest that, while environmental stress can modify top-down and bottom-up effects on herbivores at single sites, variation in site-to-site factors, possibly including clonal identity of plant, affects herbivore densities so much as to swamp out any observable interaction between environmental stress and top-down or bottom-up factors.


Subject(s)
Asteraceae/parasitology , Ecosystem , Insecta/physiology , Sodium Chloride , Animals , Diptera/physiology , Fertilizers , Florida , Hemiptera/physiology , Host-Parasite Interactions , Moths/physiology , Soil/analysis
9.
Ecology ; 87(1): 26-40, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16634294

ABSTRACT

Experimentally increasing atmospheric CO2 often stimulates plant growth and ecosystem carbon (C) uptake. Biogeochemical theory predicts that these initial responses will immobilize nitrogen (N) in plant biomass and soil organic matter, causing N availability to plants to decline, and reducing the long-term CO2-stimulation of C storage in N limited ecosystems. While many experiments have examined changes in N cycling in response to elevated CO2, empirical tests of this theoretical prediction are scarce. During seven years of postfire recovery in a scrub oak ecosystem, elevated CO2 initially increased plant N accumulation and plant uptake of tracer 15N, peaking after four years of CO2 enrichment. Between years four and seven, these responses to CO2 declined. Elevated CO2 also increased N and tracer 15N accumulation in the O horizon, and reduced 15N recovery in underlying mineral soil. These responses are consistent with progressive N limitation: the initial CO2 stimulation of plant growth immobilized N in plant biomass and in the O horizon, progressively reducing N availability to plants. Litterfall production (one measure of aboveground primary productivity) increased initially in response to elevated CO2, but the CO2 stimulation declined during years five through seven, concurrent with the accumulation of N in the O horizon and the apparent restriction of plant N availability. Yet, at the level of aboveground plant biomass (estimated by allometry), progressive N limitation was less apparent, initially because of increased N acquisition from soil and later because of reduced N concentration in biomass as N availability declined. Over this seven-year period, elevated CO2 caused a redistribution of N within the ecosystem, from mineral soils, to plants, to surface organic matter. In N limited ecosystems, such changes in N cycling are likely to reduce the response of plant production to elevated CO2.


Subject(s)
Carbon Dioxide/physiology , Nitrogen/metabolism , Quercus/metabolism , Trees/growth & development , Trees/metabolism , Atmosphere/chemistry , Biological Availability , Biomass , Carbon Dioxide/chemistry , Ecosystem , Nitrogen Isotopes , Plant Leaves/chemistry , Plant Leaves/physiology , Quercus/chemistry , Quercus/physiology , Soil/analysis , Time Factors , Trees/chemistry , Trees/physiology
10.
J Chem Ecol ; 31(10): 2343-56, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16195847

ABSTRACT

Atmospheric CO(2) concentrations have increased dramatically over the last century and continuing increases are expected to have significant, though currently unpredictable, effects on ecosystems. One important process that may be affected by elevated CO(2) is leaf litter decomposition. We investigated the interactions among atmospheric CO(2), herbivory, and litter quality within a scrub oak community at the Kennedy Space Center, Florida. Leaf litter chemistry in 16 plots of open-top chambers was followed for 3 years; eight were exposed to ambient levels of CO(2), and eight were exposed to elevated levels of CO(2) (ambient + 350 ppmV). We focused on three dominant oak species, Quercus geminata, Quercus myrtifolia, and Quercus chapmanii. Condensed tannin concentrations in oak leaf litter were higher under elevated CO(2). Litter chemistry differed among all plant species except for condensed tannins. Phenolic concentrations were lower, whereas lignin concentrations and lignin/nitrogen ratios were higher in herbivore-damaged litter independent of CO(2) concentration. However, changes in litter chemistry from year to year were far larger than effects of CO(2) or insect damage, suggesting that these may have only minor effects on litter decomposition.


Subject(s)
Carbon Dioxide/pharmacology , Ecosystem , Insecta/drug effects , Plant Leaves/drug effects , Quercus/drug effects , Animals , Atmosphere/chemistry , Climate , Florida , Host-Parasite Interactions , Insecta/physiology , Plant Leaves/parasitology , Quercus/growth & development , Time Factors
11.
J Chem Ecol ; 31(2): 267-86, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15856783

ABSTRACT

Atmospheric CO2 concentrations have increased exponentially over the last century and continuing increases are expected to have significant effects on ecosystems. We investigated the interactions among atmospheric CO2, foliar quality, and herbivory within a scrub oak community at the Kennedy Space Center, Florida. Sixteen plots of open-top chambers were followed; eight of which were exposed to ambient levels of CO2 (350 ppm), and eight of which were exposed to elevated levels of CO2 (700 ppm). We focused on three oak species, Quercus geminata, Quercus myrtifolia, Quercus chapmanii, and one nitrogen fixing legume, Galactia elliottii. There were declines in overall nitrogen and increases in C:N ratios under elevated CO2. Total carbon, phenolics (condensed tannins, hydrolyzable tannins, total phenolics) and fiber (cellulose, hemicellulose, lignin) did not change under elevated CO2 across plant species. Plant species differed in their relative foliar chemistries over time, however, the only consistent differences were higher nitrogen concentrations and lower C:N ratios in the nitrogen fixer when compared to the oak species. Under elevated CO2, damage by herbivores decreased for four of the six insect groups investigated. The overall declines in both foliar quality and herbivory under elevated CO2 treatments suggest that damage to plants may decline as atmospheric CO2 levels continue to rise.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/pharmacology , Ecosystem , Plant Leaves/drug effects , Quercus/drug effects , Carbon/analysis , Carbon/metabolism , Florida , Nitrogen/analysis , Nitrogen/metabolism , Plant Leaves/growth & development , Quercus/classification , Species Specificity , Time Factors
12.
Oecologia ; 142(1): 46-56, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15378348

ABSTRACT

Fluctuating asymmetry (FA) represents small, random variation from symmetry and can be used as an indicator of plant susceptibility to herbivory. We investigated the effects of FA of two oak species, Quercus laevis and Q. geminata, and the responses of three herbivore guilds: leaf miners, gallers, and chewers. To examine differences in FA and herbivory between individuals, 40 leaves from each tree were collected, and FA indices were calculated. To examine differences in FA and herbivory within-individuals, we sampled pairs of mined and unmined leaves for asymmetry measurements. Differences in growth of leaf miners between leaf types were determined by tracing 50 mines of each species on symmetric leaves and asymmetric leaves. Asymmetric leaves contained significantly lower concentrations of tannins and higher concentrations of nitrogen than symmetric leaves for both plant species. Both frequency of asymmetric leaves on plants and levels of asymmetry positively influenced the abundance of Brachys, Stilbosis and other leaf miners, but no significant relationship between asymmetry and herbivory was observed for Acrocercops. Brachys and Stilbosis mines were smaller on asymmetric leaves, but differences in mine survivorship between symmetric and asymmetric leaves were observed only for Stilbosis mines. This study indicated that leaf miners might use leaf FA as a cue to plant quality, although differential survivorship among leaf types was not observed for all species studied. Reasons for the different results between guilds are discussed.


Subject(s)
Ecosystem , Insecta/growth & development , Plant Leaves/anatomy & histology , Quercus/anatomy & histology , Animals , Florida , Models, Biological , Nitrogen/metabolism , Plant Leaves/metabolism , Quercus/genetics , Tannins/metabolism
13.
Oecologia ; 142(3): 413-20, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15517407

ABSTRACT

Resource quality (plant nitrogen) and resource quantity (plant density) have often been argued to be among the most important factors influencing herbivore densities. A difficulty inherent in the studies that manipulate resource quality, by changing nutrient levels, is that resource quantity can be influenced simultaneously, i.e. fertilized plants grow more. In this study we disentangled the potentially confounding effects of plant quality and quantity on herbivore trophic dynamics by separately manipulating nutrients and plant density, while simultaneously reducing pressure from natural enemies (parasitoids) in a fully factorial design. Plant quality of the sea oxeye daisy, Borrichia frutescens, a common coastal species in Florida, was manipulated by adding nitrogen fertilizer to increase and sugar to decrease available nitrogen. Plant density was manipulated by pulling by hand 25 or 50% of Borrichia stems on each plot. Because our main focal herbivore was a gall making fly, Asphondylia borrichiae, which attacks only the apical meristems of plants, manipulating plant nitrogen levels was a convenient and reliable way to change plant quality without impacting quantity because fertilizer and sugar altered plant nitrogen content but not plant density. Our other focal herbivore was a sap-sucker, Pissonotus quadripustulatus, which taps the main veins of leaves. Parasitism of both herbivores was reduced via yellow sticky traps that caught hymenopteran parasitoids. Plant quality significantly affected the per stem density of both herbivores, with fertilization increasing, and sugar decreasing the densities of the two species but stem density manipulations had no significant effects. Parasitoid removal significantly increased the densities of both herbivores. Top-down manipulations resulted in a trophic cascade, as the density of Borrichia stems decreased significantly on parasitoid removal plots. This is because reduced parasitism increases gall density and galls can kill plant stems. In this system, plant quality and natural enemies impact per stem herbivore population densities but plant density does not.


Subject(s)
Asteraceae/parasitology , Diptera/physiology , Animals , Asteraceae/growth & development , Asteraceae/metabolism , Florida , Host-Parasite Interactions , Nitrogen/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/parasitology
14.
J Chem Ecol ; 30(6): 1143-52, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15303319

ABSTRACT

The rising level of atmospheric CO2 has stimulated several recent studies attempting to predict the effects of increased CO2 on ecological communities. However, most of these studies have been conducted in the benign conditions of the laboratory and in the absence of herbivores. In the current study, we utilized large octagonal chambers, which enclosed portions of an intact scrub-oak community to investigate the interactive effects of CO2 and insect herbivory on myrtle oak, Quercus myrtifolia. Specifically, we assessed the effects of ambient and elevated CO2 (2x current concentrations) on percent foliar nitrogen, C:N ratio, total relative foliar tannin content, and the presence of leaf damage caused by leaf mining and leaf chewing insects that feed on myrtle oak. Total foliar N declined and C:N ratios increased significantly in oaks in elevated CO2 chambers. The percentages of leaves damaged by either leafminers or leaf chewers tended to be lower in elevated compared to ambient chambers, but they co-occurred on leaves less than expected, regardless of CO2 treatment. Leaves that had been either mined or chewed exhibited a similar wounding or defensive response; they had an average of 25 and 21% higher protein binding ability, which is correlated with tannin concentration, compared to nondamaged control leaves, respectively. While the protein-binding ability (expressed as total percent tannin) of leaves from elevated CO2 was slightly higher than from leaves grown in ambient chambers, this difference was not significant.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/pharmacology , Ecosystem , Insecta/drug effects , Plant Leaves/drug effects , Quercus/drug effects , Animals , Carbon/analysis , Carbon/metabolism , Hydrolyzable Tannins/analysis , Hydrolyzable Tannins/metabolism , Insecta/physiology , Nitrogen/analysis , Nitrogen/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Protein Binding , Quercus/metabolism , Quercus/parasitology
16.
Oecologia ; 134(1): 82-7, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12647184

ABSTRACT

The unabated increase in global atmospheric CO(2) is expected to induce physiological changes in plants, including reduced foliar nitrogen, which are likely to affect herbivore densities. This study employs a field-based CO(2 )enrichment experiment at Kennedy Space Center, Florida, to examine plant-herbivore (insect) interactions inside eight open-topped chambers with elevated CO(2) (710 ppm) and eight control chambers with ambient CO(2). In elevated CO(2) we found decreased herbivore densities per 100 leaves, especially of leaf miners, across all five plant species we examined: the oak trees Quercus myrtifolia, Q. geminata, and Q. chapmanii, the nitrogen-fixing vine Galactia elliottii and the shrub Vaccinium myrsinites. Both direct and indirect effects of lowered plant nitrogen may influence this decrease in herbivore densities. Direct effects of lowered nitrogen resulted in increased host-plant related death and an increase in compensatory feeding: per capita herbivore leaf consumption in elevated CO(2) was higher than in ambient CO(2). Indirectly, compensatory feeding may have prolonged herbivore development and increased exposure to natural enemies. For all leaf miners we examined, mortality from natural enemies increased in elevated CO(2). These increases in host-plant induced mortality and in attack rates by natural enemies decreased leaf miner survivorship, causing a reduction in leaf miner density per 100 leaves. Despite increased leaf production in elevated CO(2) from the carbon fertilization effect, absolute herbivore abundance per chamber was also reduced in elevated CO(2). Because insects cause premature leaf abscission, we also thought that leaf abscission would be decreased in elevated CO(2). However, for all plant species, leaf abscission was increased in elevated CO(2), suggesting a direct effect of CO(2) on leaf abscission that outweighs the indirect effects of reduced insect densities on leaf abscission.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/pharmacology , Ecosystem , Insecta/drug effects , Insecta/physiology , Trees/drug effects , Trees/parasitology , Animals , Feeding Behavior , Host-Parasite Interactions , Larva/drug effects , Larva/physiology , Plant Leaves/drug effects , Plant Leaves/parasitology , Population Density , Trees/classification
17.
Oecologia ; 133(2): 243-253, 2002 Oct.
Article in English | MEDLINE | ID: mdl-28547312

ABSTRACT

In this study we investigated the potential importance of species identity and herbivore feeding mode in determining the strengths of top-down and bottom-up effects on phytophagous insect densities. In 1998, we conducted two factorial field experiments in which we manipulated host plant quality and intensity of parasitoid attack on three salt marsh herbivores, the planthoppers Prokelisia marginata and Pissonotus quadripustulatus (Homoptera: Delphacidae), which feed only on Spartina alterniflora and Borrichia frutescens, respectively, and the gall fly Asphondylia borrichiae (Diptera: Cecidomyiidae), which feeds only on B. frutescens. We increased plant quality through addition of nitrogen fertilizer, and decreased parasitism by trapping hymenopteran parasitoids continuously throughout the study. Herbivore densities were censused biweekly. Increasing plant quality through fertilization increased the density of all three herbivores within 2 weeks of treatment application, and higher densities were maintained for the duration of the study. Reduction of top-down pressure had no effect on either planthopper species, possibly because of compensatory mortality affecting the two species. In contrast, reduction of parasitism significantly increased the density of A. borrichiae galls, perhaps because development within gall tissue reduces the sources of compensatory mortality affecting this species. The results of this study show that the bottom-up effects of plant quality were strong and consistent for all three species, but the strength of top-down effects differed between the two feeding guilds. Thus, even for herbivores feeding on the same host plant, conclusions drawn regarding the relative importance of top-down and bottom-up effects may vary depending upon the feeding mode of the herbivore.

18.
Oecologia ; 119(2): 275-280, 1999 May.
Article in English | MEDLINE | ID: mdl-28307978

ABSTRACT

The relative importance of bottom-up versus top-down forces, and the effect of productivity on community dynamics continue to be of much interest to ecologists. Trophic dynamic theories are difficult to test, as they require explicit knowledge of the many organisms involved, as well as the nature of the interactions between them. The Oksanen-Fretwell (OF) theory, which suggests that the relative roles of top-down and bottom-up factors vary with primary productivity, is well known in the literature, but is difficult to test rigorously. Recently, two experimental studies have tried to test OF theory. In this paper we discuss methodological problems associated with these studies that may weaken the conclusions drawn by the authors.

19.
Oecologia ; 113(3): 400-405, 1998 Jan.
Article in English | MEDLINE | ID: mdl-28307825

ABSTRACT

We report on the influence of experimentally increased interstitial salinity and plant nitrogen on the abundance of the delphacid planthopper, Prokelisia marginata (Van Duzee) (Homoptera: Delphacidae), which feeds on salt marsh cordgrass, Spartina alterniflora. We also report the effects of these treatments on parasitism of P. marginata eggs by the fairyfly parasitoid, Anagrus sophiae (Hymenoptera: Mymaridae). Soil salinity was significantly elevated following the addition of salt pellets broadcast over the ground and plant foliar nitrogen was significantly increased after the addition of fertilizer. The addition of fertilizer increased P. marginata densities on Spartina but addition of salt did not. Neither treatment significantly affected levels of egg parasitism by A. sophiae. In this system direct effects of plants on their herbivores via changes in plant chemistry appear more important than indirect effects of plants on herbivores via their natural enemies.

20.
Oecologia ; 108(2): 375-379, 1996 Oct.
Article in English | MEDLINE | ID: mdl-28307852

ABSTRACT

The question of whether multiple natural enemies often interact to produce lower host mortality than single enemies acting alone has not yet been resolved. We compared the effects of four different combinations of natural enemies-parasitoids, predators, parasitoids plus predators, and no enemies-on caged aphid populations on marsh elder, Iva frutescens, in west-central Florida. Using starting densities of natural enemies commonly found in the field, we showed that parasitoid wasps reduced aphid population densities more than predatory ladybird beetles. The addition of predators to cages containing parasites reduced the ability of parasitoids to decrease aphid population densities. Because the experiments ran only over the course of one generation, such a reduction in the effectiveness of parasites is likely caused by interference of predators with parasitoid behavior. Parasitism in the cages containing both parasitoids and predators was reduced when compared to percent parasitism in parasitoid-only cages, but this could also be due to predation. Our experiments showed that ladybird beetles prey on parasitized aphids. Thus over the long-term, the effectiveness of parasites is impaired by the interference of predators on ovipositing parasitoids and by the predation of parasitized aphids. The effects of natural enemies in this system are clearly non-additive.

SELECTION OF CITATIONS
SEARCH DETAIL
...