Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 124(4): 046402, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058766

ABSTRACT

We show that the Fermi surface can survive the presence of extreme compositional disorder in the equiatomic alloy Ni_{0.25}Fe_{0.25}Co_{0.25}Cr_{0.25}. Our high-resolution Compton scattering experiments reveal a Fermi surface which is smeared across a significant fraction of the Brillouin zone (up to 40% of 2π/a). The extent of this smearing and its variation on and between different sheets of the Fermi surface have been determined, and estimates of the electron mean free path and residual resistivity have been made by connecting this smearing with the coherence length of the quasiparticle states.

2.
Phys Chem Chem Phys ; 18(34): 24043-56, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27523408

ABSTRACT

It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. Using ab initio calculations based on density functional theory and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atoms in the structure, which further determines the elemental diffusion properties. Different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.

3.
Sci Rep ; 6: 26179, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27188715

ABSTRACT

The face centered cubic (fcc) alloy NiCoCrx with x ≈ 1 is found to be close to the Cr concentration where the ferromagnetic transition temperature, Tc, goes to 0. Near this composition these alloys exhibit a resistivity linear in temperature to 2 K, a linear magnetoresistance, an excess -TlnT (or power law) contribution to the low temperature heat capacity, and excess low temperature entropy. All of the low temperature electrical, magnetic and thermodynamic properties of the alloys with compositions near x ≈ 1 are not typical of a Fermi liquid and suggest strong magnetic fluctuations associated with a quantum critical region. The limit of extreme chemical disorder in this simple fcc material thus provides a novel and unique platform to study quantum critical behavior in a highly tunable system.

4.
Nat Commun ; 6: 8736, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26507943

ABSTRACT

A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications.

5.
Sci Rep ; 5: 14115, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26365502

ABSTRACT

Two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tuned up to large values (0.2 eV for HgTe and 0.05 eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature.

6.
J Phys Condens Matter ; 26(39): 395005, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25164599

ABSTRACT

Based on first-principles calculations in the framework of van der Waals density functional theory, we find that giant, Rashba-like spin splittings can be induced in both the surface states and quantum well states of thin Bi2Se3 films by application of an external electric field. The charge is redistributed so that the Dirac cones of the upper and lower surfaces become nondegenerate and completely gapless. Interestingly, a momentum-dependent spin texture is developed on the two surfaces of the films. Some of the quantum well states, which reside in the middle of the Bi2Se3 film under zero field, are driven to the surface by the electric field. The Rashba splitting energy has a highly non-linear dependence on the momentum and the electric field due to the large contribution of the high-order Rashba terms, which suggests complex spin dynamics in the thin films of Bi2Se3 under an electric field.

7.
J Phys Condens Matter ; 26(27): 274208, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24934202

ABSTRACT

An important step in electronic structure calculations using multiple-scattering theory is obtaining the density of states for the central site from the Green's function for that site. We have found that the Krein's spectral displacement function for the central site contributes significantly to the understanding of these calculations. We argue that these insights can lead to improvements in the robustness of MST electronic structure codes without negatively impacting their performance.


Subject(s)
Algorithms , Electromagnetic Fields , Models, Chemical , Computer Simulation , Electron Transport , Electrons
8.
J Am Chem Soc ; 135(34): 12634-45, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23952672

ABSTRACT

Although there are only a few known examples of supported single-atom catalysts, they are unique because they bridge the gap between homogeneous and heterogeneous catalysis. Here, we report the CO oxidation activity of monodisperse single Pt atoms supported on an inert substrate, θ-alumina (Al2O3), in the presence of stoichiometric oxygen. Since CO oxidation on single Pt atoms cannot occur via a conventional Langmuir-Hinshelwood scheme (L-H scheme) which requires at least one Pt-Pt bond, we carried out a first-principles density functional theoretical study of a proposed pathway which is a variation on the conventional L-H scheme and inspired by the organometallic chemistry of platinum. We find that a single supported Pt atom prefers to bond to O2 over CO. CO then bonds with the oxygenated Pt atom and forms a carbonate which dissociates to liberate CO2, leaving an oxygen atom on Pt. Subsequent reaction with another CO molecule regenerates the single-atom catalyst. The energetics of the proposed mechanism suggests that the single Pt atoms will get covered with CO3 unless the temperature is raised to eliminate CO2. We find evidence for CO3 coverage at room temperature supporting the proposed mechanism in an in situ diffuse reflectance infrared study of CO adsorption on the catalyst's supported single atoms. Thus, our results clearly show that supported Pt single atoms are catalytically active and that this catalytic activity can occur without involving the substrate. Characterization by electron microscopy and X-ray absorption studies of the monodisperse Pt/θ-Al2O3 are also presented.

9.
Phys Rev Lett ; 105(9): 096404, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20868181

ABSTRACT

Using first-principles calculations within density functional theory, we explore the feasibility of converting ternary half-Heusler compounds into a new class of three-dimensional topological insulators (3DTI). We demonstrate that the electronic structure of unstrained LaPtBi as a prototype system exhibits a distinct band-inversion feature. The 3DTI phase is realized by applying a uniaxial strain along the [001] direction, which opens a band gap while preserving the inverted band order. A definitive proof of the strained LaPtBi as a 3DTI is provided by directly calculating the topological Z2 invariants in systems without inversion symmetry. We discuss the implications of the present study to other half-Heusler compounds as 3DTI, which, together with the magnetic and superconducting properties of these materials, may provide a rich platform for novel quantum phenomena.

10.
Phys Rev Lett ; 104(16): 167202, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-20482077

ABSTRACT

Using in situ magneto-optical Kerr effect measurements and phenomenological modeling, we study the tunability in both the magnetization anisotropy and magnetic coupling of Fe nanodots on a curved Cu(111) substrate with varying vicinity. We observe that, as the terrace width w decreases, the magnetization anisotropy increases monotonically, faster when w is smaller than the nanodot size d. In contrast, the magnetic coupling strength also increases until w approximately d, after which it decreases steeply. These striking observations can be rationalized by invoking the counterintuitive dimensionality variation of the surface electrons mediating the interdot coupling: the electrons are confined to be one dimensional (1D) when w > or = d, but become quasi-2D when w < d due to enhanced electron spillover across the steps bridged by the nanodots.

11.
Nano Lett ; 6(1): 128-32, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16402800

ABSTRACT

We propose a novel concept, namely, shell-doping of nanowires, for control of carrier mobility in nanowires. Different from traditional doping, where dopant atoms are distributed uniformly inside nanowires, shell-doping spatially confines dopant atoms within a few atomic layers in the shell region of a nanowire. Our numerical results based on the Anderson model of electronic disorder show that electrons in a shell-doped nanowire exhibit a peculiar behavior very different from that of uniformly doped nanowires. Beyond some critical doping, electron dynamics in a shell-doped nanowire undergoes a localization/quasi-delocalization transition, namely, the electron diffusion length decreases in the regime of weak disorder but increases in the regime of strong disorder. This transition is a result of the existence of quasi-mobility-edges in the energy spectrum of the system, which can be exploited experimentally through control of electron concentration, carrier density, and degree of disorder.


Subject(s)
Nanostructures , Nanotechnology , Diffusion
SELECTION OF CITATIONS
SEARCH DETAIL
...