Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 43(24): e2200249, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35856189

ABSTRACT

Likened to both thermosets and thermoplastics, vitrimers are a unique class of materials that combine remarkable stability, healability, and reprocessability. Herein, this work describes a photopolymerized thiol-ene-based vitrimer that undergoes dynamic covalent exchanges through uncatalyzed transamination of enamines derived from cyclic ß-triketones, whereby the low energy barrier for exchange facilitates reprocessing and enables rapid depolymerization. Accordingly, an alkene-functionalized ß-triketone, 5,5-dimethyl-2-(pent-4-enoyl)cyclohexane-1,3-dione, is devised which is then reacted with 1,6-diaminohexane in a stoichiometrically imbalanced fashion (≈1:0.85 primary amine:triketone). The resulting networks exhibit subambient glass transition temperature (Tg = 5.66 °C) by differential scanning calorimetry. Using a Maxwell stress-relaxation fit, the topology-freezing temperature (Tv ) is calculated to be -32 °C. Small-amplitude oscillatory shear rheological analysis enables to identify a practical critical temperature above which the vitrimer can be successfully reprocessed (Tv,eff ). Via the introduction of excess primary amines, this work can readily degrade the networks into monomeric precursors, which are in turn reacted with diamines to regenerate reprocessable networks. Photopolymerization provides unique spatiotemporal control over the network topology, thereby opening the path for further investigation of vitrimer properties. As such, this work expands the toolbox of chemical upcycling of networks and enables their wider implementation.

2.
Macromol Rapid Commun ; 43(24): e2200487, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35822234

ABSTRACT

Incorporating dynamic covalent bonds into block copolymers provides useful molecular level information during mechanical testing, but it is currently unknown how the incorporation of these units affects the resultant polymer morphology. High-molecular-weight polyisobutylene-b-polystyrene block copolymers containing an anthracene/maleimide dynamic covalent bond are synthesized through a combination of postpolymerization modification, reversible addition-fragmentation chain-transfer polymerization, and Diels-Alder coupling. The bulk morphologies with and without dynamic covalent bond are characterized by atomic force microscopy  and small-angle X-ray scattering, which reveal a strong dependence on annealing time and casting solvent. Morphology is largely unaffected by the inclusion of the mechanophore. The high-molecular-weight polymers synthesized allow interrogation of a large range of polymer domain sizes.

3.
ACS Macro Lett ; 3(12): 1230-1234, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-35610831

ABSTRACT

Phenoxyalkyl acrylates and methacrylates were studied as quenching (capping) agents for living carbocationic polymerization of isobutylene (IB) at -70 °C in 40/60 (v/v) hexane/methyl chloride, catalyzed by TiCl4. Quenching reactions were carried out by reactivation by TiCl4 of preformed difunctional tert-chloride-terminated polyisobutylene (PIB) or by a one-step method in which IB polymerization and quenching were conducted sequentially in the same reactor. Chain-end concentrations ranged from 0.02 to 0.1 M, and quenchers were used at concentrations of 1.5-2.5 times the chain ends. The phenoxyalkyl (meth)acrylates were synthesized by reaction of (meth)acryloyl chloride with the corresponding phenoxyalkanol; alkylene tethers from two to eight carbons were examined. Quenched polymers were characterized by 1H and 13C NMR, MALDI-TOF mass spectrometry, and size exclusion chromatography (SEC). Alkylation was observed to occur exclusively at the para position of the phenoxy moiety, and SEC showed no coupling or molecular weight degradation as a result of quenching. For short tethers of two or three carbons, quenching was slow and incomplete due to competing loss of living chain ends presumably by carbocation rearrangement. For tethers of four, six, or eight carbons, quenching was much faster and yielded quantitative (meth)acrylate chain-end functionality (number-average functionality ≥1.98 by 1H NMR). MALDI-TOF-MS results were consistent with the expected end group structures. The carbonyl group of the quencher consumes one equivalent of Lewis acid in formation of a 1:1 complex; thus, the highest rate of quenching at a given Lewis acid concentration is achieved by using only a modest excess of quencher relative to living chain ends.

SELECTION OF CITATIONS
SEARCH DETAIL