Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 86(3)2020 01 21.
Article in English | MEDLINE | ID: mdl-31757827

ABSTRACT

Antibiotic resistance continues to be an emerging threat both in clinical and environmental settings. Among the many causes, the impact of postchlorinated human wastewater on antibiotic resistance has not been well studied. Our study compared antibiotic susceptibility among Aeromonas spp. in postchlorinated effluents to that of the recipient riverine populations for three consecutive years against 12 antibiotics. Aeromonas veronii and Aeromonas hydrophila predominated among both aquatic environments, although greater species diversity was evident in treated wastewater. Overall, treated wastewater contained a higher prevalence of nalidixic acid-, trimethoprim-sulfamethoxazole (SXT)-, and tetracycline-resistant isolates, as well as multidrug-resistant (MDR) isolates compared to upstream surface water. After selecting for tetracycline-resistant strains, 34.8% of wastewater isolates compared to 8.3% of surface water isolates were multidrug resistant, with nalidixic acid, streptomycin, and SXT being the most common. Among tetracycline-resistant isolates, efflux pump genes tetE and tetA were the most prevalent, though stronger resistance correlated with tetA. Over 50% of river and treated wastewater isolates exhibited cytotoxicity that was significantly correlated with serine protease activity, suggesting many MDR strains from effluent have the potential to be pathogenic. These findings highlight that conventionally treated wastewater remains a reservoir of resistant, potentially pathogenic bacterial populations being introduced into aquatic systems that could pose a threat to both the environment and public health.IMPORTANCE Aeromonads are Gram-negative, asporogenous rod-shaped bacteria that are autochthonous in fresh and brackish waters. Their pathogenic nature in poikilotherms and mammals, including humans, pose serious environmental and public health concerns especially with rising levels of antibiotic resistance. Wastewater treatment facilities serve as major reservoirs for the dissemination of antibiotic resistance genes (ARGs) and resistant bacterial populations and are, thus, a potential major contributor to resistant populations in aquatic ecosystems. However, few longitudinal studies exist analyzing resistance among human wastewater effluents and their recipient aquatic environments. In this study, considering their ubiquitous nature in aquatic environments, we used Aeromonas spp. as bacterial indicators of environmental antimicrobial resistance, comparing it to that in postchlorinated wastewater effluents over 3 years. Furthermore, we assessed the potential of these resistant populations to be pathogenic, thus elaborating on their potential public health threat.


Subject(s)
Aeromonas/isolation & purification , Drug Resistance, Bacterial , Rivers/microbiology , Waste Disposal, Fluid , Wastewater/microbiology , Aeromonas/enzymology , Aeromonas hydrophila/enzymology , Aeromonas hydrophila/isolation & purification , Aeromonas veronii/enzymology , Aeromonas veronii/isolation & purification , Bacterial Proteins/analysis , Cities , Halogenation , Illinois , Longitudinal Studies , Phenotype , Seasons , Serine Proteases/analysis , Species Specificity
2.
Hum Mol Genet ; 27(14): 2454-2465, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29726930

ABSTRACT

The 17 genes of the T-box family are transcriptional regulators that are involved in all stages of embryonic development, including craniofacial, brain, heart, skeleton and immune system. Malformation syndromes have been linked to many of the T-box genes. For example, haploinsufficiency of TBX1 is responsible for many structural malformations in DiGeorge syndrome caused by a chromosome 22q11.2 deletion. We report four individuals with an overlapping spectrum of craniofacial dysmorphisms, cardiac anomalies, skeletal malformations, immune deficiency, endocrine abnormalities and developmental impairments, reminiscent of DiGeorge syndrome, who are heterozygotes for TBX2 variants. The p.R20Q variant is shared by three affected family members in an autosomal dominant manner; the fourth unrelated individual has a de novo p.R305H mutation. Bioinformatics analyses indicate that these variants are rare and predict them to be damaging. In vitro transcriptional assays in cultured cells show that both variants result in reduced transcriptional repressor activity of TBX2. We also show that the variants result in reduced protein levels of TBX2. Heterologous over-expression studies in Drosophila demonstrate that both p.R20Q and p.R305H function as partial loss-of-function alleles. Hence, these and other data suggest that TBX2 is a novel candidate gene for a new multisystem malformation disorder.


Subject(s)
Developmental Disabilities/genetics , DiGeorge Syndrome/genetics , Genetic Predisposition to Disease , T-Box Domain Proteins/genetics , Adult , Animals , Cardiovascular Abnormalities/genetics , Cardiovascular Abnormalities/physiopathology , Cardiovascular System/physiopathology , Child , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/physiopathology , Developmental Disabilities/physiopathology , DiGeorge Syndrome/physiopathology , Disease Models, Animal , Drosophila melanogaster , Female , Gene Expression Regulation, Developmental , Haploinsufficiency/genetics , Heart Defects, Congenital/genetics , Heart Defects, Congenital/physiopathology , Humans , Mice , Pedigree , Pregnancy , Young Adult , Zebrafish
3.
J Gerontol B Psychol Sci Soc Sci ; 70(5): 718-28, 2015 Sep.
Article in English | MEDLINE | ID: mdl-24352499

ABSTRACT

BACKGROUND: Memory for both facial emotional expression and facial identity was explored in younger and older adults in 3 experiments using a delayed match-to-sample procedure. METHOD: Memory sets of 1, 2, or 3 faces were presented, which were followed by a probe after a 3-s retention interval. RESULTS: There was very little difference between younger and older adults in memory for emotional expressions, but memory for identity was substantially impaired in the older adults. DISCUSSION: Possible explanations for spared memory for emotional expressions include socioemotional selectivity theory as well as the existence of overlapping yet distinct brain networks for processing of different emotions.


Subject(s)
Aging/physiology , Face , Facial Expression , Memory, Short-Term/physiology , Pattern Recognition, Visual/physiology , Social Perception , Adult , Age Factors , Aged , Emotions/physiology , Female , Humans , Male , Young Adult
4.
Biochem Pharmacol ; 77(1): 76-85, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18840413

ABSTRACT

Staurosporine (STP) was shown to induce cell apoptosis through formation of reactive oxygen species, but a role for cellular redox has not been defined. In this study, we report that STP (2 microM) caused apoptosis (24+/-3% at 24 h) of human colon adenocarcinoma epithelial cell line HT29 that was preceded by significant glutathione (GSH) and glutathione disulfide (GSSG) efflux (6 h), but independent of changes in cellular glutathione/glutathione disulfide (GSH/GSSG) redox status. The blockade of GSH efflux by gamma-glutamyl glutamate (gamma-GG) or ophthalmic acid was associated with apoptosis attenuation; however, gamma-GG administration after peak GSH efflux (8 h) did not confer cytoprotection. Moreover, lowering cellular GSH through inhibition of its synthesis prevented extracellular GSH accumulation and cell apoptosis, thus validating a link between cellular GSH export and the trigger of cell apoptosis. Inhibition of gamma-glutamyl transferase (GGT1, EC 2.3.2.2)-catalyzed extracellular GSH degradation with acivicin significantly blocked GSH efflux, suggesting that GSH breakdown is a driving force for GSH export. Interestingly, acivicin treatment enhanced extracellular GSSG accumulation, consistent with GSH oxidation. STP-induced HT29 cell apoptosis was associated with caspase-3 activation independent of caspase-8 or caspase-9 activity; accordingly, inhibitors of the latter caspases were without effect on STP-induced apoptosis. STP similarly induced GSH efflux and apoptosis in a non-malignant human NCM460 colonic cell line in association with caspase-3 activation. Collectively, our results demonstrate that STP induction of apoptosis in malignant and non-malignant colonic cells is temporally linked to the export of cellular GSH and the activation of caspase-3 without caspase-8 or -9 involvement.


Subject(s)
Apoptosis/physiology , Colon/metabolism , Glutathione/metabolism , Intestinal Mucosa/metabolism , Staurosporine/pharmacology , Apoptosis/drug effects , Colon/cytology , Colon/drug effects , Female , Glutathione/physiology , HT29 Cells , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Oxidation-Reduction
6.
Nat Mater ; 1(3): 169-72, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12618805

ABSTRACT

The creation of nanoscale materials for advanced structures has led to a growing interest in the area of biomineralization. Numerous microorganisms are capable of synthesizing inorganic-based structures. For example, diatoms use amorphous silica as a structural material, bacteria synthesize magnetite (Fe3O4) particles and form silver nanoparticles, and yeast cells synthesize cadmium sulphide nanoparticles. The process of biomineralization and assembly of nanostructured inorganic components into hierarchical structures has led to the development of a variety of approaches that mimic the recognition and nucleation capabilities found in biomolecules for inorganic material synthesis. In this report, we describe the in vitro biosynthesis of silver nanoparticles using silver-binding peptides identified from a combinatorial phage display peptide library.


Subject(s)
Biomimetic Materials/chemical synthesis , Crystallization/methods , Nanotechnology/methods , Peptide Library , Peptides/chemistry , Silver/chemistry , Amino Acid Sequence , Base Sequence , Biomimetics/methods , Cloning, Molecular , Microscopy, Electron , Minerals/chemical synthesis , Molecular Conformation , Particle Size , Peptides/metabolism , Pseudomonas/classification , Pseudomonas/metabolism , Silver/metabolism , Silver Compounds/chemical synthesis , Silver Compounds/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...