Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7377, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450722

ABSTRACT

Ice can sculpt extraordinary landscapes, yet the efficacy of, and controls governing, glacial erosion on geological timescales remain poorly understood and contended, particularly across Polar continental shields. Here, we assimilate geophysical data with modelling of the Eurasian Ice Sheet - the third largest Quaternary ice mass that spanned 49°N to 82°N - to decipher its erosional footprint during the entire last ~100 ka glacial cycle. Our results demonstrate extreme spatial and temporal heterogeneity in subglacial erosion, with rates ranging from 0 to 5 mm a-1 and a net volume equating to ~130,000 km3 of bedrock excavated to depths of ~190 m. A hierarchy of environmental controls ostensibly underpins this complex signature: lithology, topography and climate, though it is basal thermodynamics that ultimately regulates erosion, which can be variously protective, pervasive, or, highly selective. Our analysis highlights the remarkable yet fickle nature of glacial erosion - critically modulated by transient ice-sheet dynamics - with its capacity to impart a profound but piecemeal geological legacy across mid- and high latitudes.


Subject(s)
Climate , Geology , Ice Cover , Thermodynamics
2.
Science ; 358(6364): 781-784, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29123066

ABSTRACT

The Cordilleran Ice Sheet (CIS) once covered an area comparable to that of Greenland. Previous geologic evidence and numerical models indicate that the ice sheet covered much of westernmost Canada as late as 12.5 thousand years ago (ka). New data indicate that substantial areas throughout westernmost Canada were ice free prior to 12.5 ka and some as early as 14.0 ka, with implications for climate dynamics and the timing of meltwater discharge to the Pacific and Arctic oceans. Early Bølling-Allerød warmth halved the mass of the CIS in as little as 500 years, causing 2.5 to 3.0 meters of sea-level rise. Dozens of cirque and valley glaciers, along with the southern margin of the CIS, advanced into recently deglaciated regions during the Bølling-Allerød and Younger Dryas.

3.
Nat Commun ; 5: 3815, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24809336

ABSTRACT

The century-long debate over the origins of inner gorges that were repeatedly covered by Quaternary glaciers hinges upon whether the gorges are fluvial forms eroded by subaerial rivers, or subglacial forms cut beneath ice. Here we apply cosmogenic nuclide exposure dating to seven inner gorges along ~500 km of the former Fennoscandian ice sheet margin in combination with a new deglaciation map. We show that the timing of exposure matches the advent of ice-free conditions, strongly suggesting that gorges were cut by channelized subglacial meltwater while simultaneously being shielded from cosmic rays by overlying ice. Given the exceptional hydraulic efficiency required for meltwater channels to erode bedrock and evacuate debris, we deduce that inner gorges are the product of ice sheets undergoing intense surface melting. The lack of postglacial river erosion in our seven gorges implicates subglacial meltwater as a key driver of valley deepening on the Baltic Shield over multiple glacial cycles.

SELECTION OF CITATIONS
SEARCH DETAIL