Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Microbiol Rep ; 15(6): 431-444, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37574328

ABSTRACT

Neonicotinoids are a group of nicotine-related chemicals widely used as insecticides in agriculture. Several studies have shown measurable quantities of neonicotinoids in the environment but little is known regarding their impact on soil microbial populations. The purpose of this systematic review was to clarify the effects of neonicotinoids on soil microbiology and to highlight any knowledge gaps. A formal systematic review was performed following PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) guidelines using keywords in PubMed, SCOPUS and Web of Science. This resulted in 29 peer-reviewed articles, whose findings diverged widely because of variable methodologies. Field-based studies were few (28%). Imidacloprid was the most widely used (66%) and soil microbial communities were most sensitive to it. Spray formulations were used in 83% of the studies and seed treatments in the rest. Diversity indices were the most frequently reported soil microbial parameter (62%). About 45% of the studies found that neonicotinoids had adverse impacts on soil microbial community structure, composition, diversity, functioning, enzymatic activity and nitrogen transformation. Interactions with soil physicochemical properties were poorly addressed in all studies. The need for more research, particularly field-based research on the effects of neonicotinoids on soil microorganisms was highlighted by this review.


Subject(s)
Insecticides , Microbiota , Agriculture , Insecticides/toxicity , Neonicotinoids/toxicity , Soil/chemistry
2.
Glob Chang Biol ; 19(10): 3238-44, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23897802

ABSTRACT

Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks.


Subject(s)
Carbon Dioxide/analysis , Carbon/analysis , Dust/analysis , Models, Theoretical , Soil/chemistry , Australia , Spatio-Temporal Analysis , Wind
SELECTION OF CITATIONS
SEARCH DETAIL